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ABSTRACT
The problem of quickly detecting the occurrence of an un-
usual event that happens on one of multiple independent data
streams is considered. In the considered problem, all data
streams at the initial are under normal state and are generated
by probability distribution P0. At some unknown time, an un-
usual event happens and the distribution of one data stream is
modified to P1 while the distributions of the rest remain un-
change. The observer can only observe one data stream at one
time. With his sequential observations, the observer wants to
design an online stopping rule and a data stream switching
rule to minimize the detection delay, namely the time differ-
ence between the occurrence of the unusual event and the time
of raising an alarm, while keeping the false alarm rate under
control. We model the problem under non-Bayesian quick-
est detection framework, and propose a detection procedure
based on the CUSUM statistic. We show that this proposed
detection procedure is asymptotically optimal.

Index Terms— CUSUM; multiple sources; quickest
change-point detection; sequential detection.

1. INTRODUCTION

Suppose that one is monitoring finitely many independent da-
ta streams in a sequential manner, say, the observer can only
get one sample from one data stream at each time slot. At
some unknown time, which is termed as the change-point, an
unusual event occurs and changes the distributions of some
data streams. The observer does not know which data stream-
s are affected by the unusual event. By sequentially scanning
over all data streams, the observer wants to design an effi-
cient online algorithm, utilizing his observed samples collect-
ed from different streams, to quickly detect the occurrence of
the change-point while keeping the false alarm under control.
This problem of quickly detecting change-point over multi-
ple data streams under sequential observations arises in many
practical scenarios such as wireless sensor networks, cogni-
tive radios, network intrusion detection, etc.

Taking the application in wireless sensor network as a
motivating example. A large scale sensor network is often
deployed to monitor the abnormal change of the surround-
ing environment. The abruptly happened unusual event may
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have limited range of influence, hence only the sensors near
the location where the unusual event happens could observe
the change. Due to some physical limitations, such as limit-
ed communication bandwidth or limited battery capacity, the
fusion center will only activate a few sensors at each time s-
lot. In such applications, it is desirable for the fusion center to
quickly detect the abrupt change after it happens while keeps
the false alarm as infrequently as possible. The problem de-
scribed above properly models such applications.

In this paper, we model the problem as a non-Bayesian
quickest change-point detection (QCD) problem. The goal is
to minimize the conditional average detection delay (CAD-
D), which is the time difference between the occurrence of
the change-point and the time of raising an alarm, subject-
ed to an average run length (ARL) to false alarm constraint,
which measures the average duration between two successive
false alarms. This formulation is known as Pollak’s formu-
lation [1]. We propose a detection procedure, which consists
of a data stream switching rule and a detection stopping rule,
based on the cumulative sum (CUSUM) statistic. Specifical-
ly, we run CUSUM test on the current observing data stream.
If the CUSUM statistic decreases below the lower threshold,
the observer abandons the current stream and switches to the
next data stream. If the current observing data stream is the
last one, the observer switches back to scan from the first da-
ta stream again. If the CUSUM statistic exceeds the upper
bound, the observer raises an alarm for the detection of the
change-point. We show that the proposed algorithm is asymp-
totically optimal as ARL goes to infinity.

The problem considered in this paper are related to recent
works on the QCD problem for multiple sequences. Due to
limited space, we mention a few of them. [2, 3] consider the
non-Bayesian QCD problem and asymptotically optimal de-
tection strategy in the distributed sensor systems. [4] consider
the QCD problem in the sensor network setup with unknown
post-change parameters. [5] propose the SUM and the MAX
algorithms to efficiently detect the change if the change only
affects on a fraction of data streams. All these papers assume
that the observer can simultaneously observe all data stream-
s, hence he obtains an observation vector at each time slot.
However, in our paper, the observer can only observe one data
stream at each time, and he has to design a switching strategy
to sequentially scan over all data streams.

Our considered problem is also related to the quickest
search problem [6, 7, 8, 9], in which one aims to quickly find a
data stream that is distributed according to f1 by sequentially
searching over multiple data streams. [6] shows that CUSUM

4404978-1-5386-4658-8/18/$31.00 ©2018 IEEE ICASSP 2018



is the optimal detection strategy. Quickest search problem can
be viewed as an extension of the sequential probability ratio
test (SPRT), in which each data stream is either generated by
f0 or by f1. Hence the observer faces a simple hypothesis
testing problem for each data stream. However, in our prob-
lem, the distribution of each data stream is likely to experi-
ence an abrupt change, hence we focus on a QCD problem
for each data stream. In addition, quickest search problem of-
ten assumes that the observer has infinitely many data streams
and he is not allowed to switch back to observe an abandoned
data stream. But in our paper, we consider that the observ-
er monitors finitely many data streams and he is allowed to
switch back to scan from the first data stream again when he
exhausts all data streams.

The remainder of this paper is organized as follows. The
mathematical model is given in Section 2. Proposed detection
procedure and performance analysis are presented in Section
3. Section 4 illustrates some numerical examples. Section 5
offers concluding remarks.

2. PROBLEM FORMULATION

Suppose the observer is monitoring M independent data
streams. Denote the ith data stream over time index k as
{Y i

k , k = 1, 2, . . .} for i = 0, 1, . . . ,M − 1. The unusual
event will occur at an unknown time t, and it will affect the
distribution of one data stream. In this paper, we consider
non-Bayesian QCD setup, and model the change-point t as
a fixed but unknown constant. We assume that the change
occurs on each data stream with equal prior. In particular,
denote S as the index of the data stream being affected by the
change-point, we have

P (S = i) =
1

M
, i = 0, . . . ,M − 1. (1)

We point out that the event {S = i} is independent of the
change-point t. The distribution of the samples from each da-
ta stream depends on t and S. In particular, before the change-
point, the samples are generated by distribution P0 for all data
streams; after the change happens, if S = i, the samples in the
ith data stream are generated by distribution P1 and in the rest
of data streams are by distribution P0. More specifically, for
k = 1, 2, . . .

Y i
k ∼

{
P1 if S = i and k ≥ t
P0 otherwise . (2)

In addition, {Y i
k , k = 1, 2, . . .} is a conditional (conditioned

on both t and S) independent and identically distributed
(i.i.d.) sequence for all i = 0, 1, . . . ,M − 1. Let E0 and E1

denote the expectation corresponding to P0 and P1, respec-
tively.

At each time slot, the observer could only make an ob-
servation from one data stream. After taking each obser-
vation, the observer has to make one of the following three
decisions: 1) to stop the detection procedure and to alarm
the change-point; 2) to continue the detection procedure and
to take another observation from the current observing data
stream; 3) to continue the detection procedure but to switch

to observe another data stream. Hence, there are two deci-
sions to make for the observer: a stopping time τ , at which
the observer stops the detection procedure, and a data stream
switching rule ϕ = (ϕ1, ϕ2, . . .), by which the observer se-
lects the next observing stream. Generally, the observer can
switch to any one of these M data streams. However, since all
data streams are stochastically the same, we limit our discus-
sion on the strategy that the observer simply switches to the
next data stream if the current observing one is abandoned.
If the observer reaches the last data stream, then he switches
back to scan from the first data stream again. In the sequel,
we will show that the observer can achieve a good perfor-
mance with this simple strategy. More specifically, let ϕk be
the data stream switching rule adopted at time slot k. Denote
{ϕk = 0} as the decision that the observer keeps observing
the current data stream, and denote {ϕk = 1} as the decision
that the observer switches to observe the next data stream. Let
sk denote the index of the observing data stream at time slot
k, then sk evolves according to the following law:

sk = 0, for k = 1,

sk = (sk−1 + ϕk) mod M, for k = 2, 3, . . . .

Denote {Y sk
k , k = 1, 2, . . .} as the observation sequence. The

filtration generated by the observations is denoted as Fk =
σ(Y s1

1 , Y s2
2 , . . . , Y sk

k ). Hence, the stopping time τ is associ-
ated with {Fk} and ϕk is a Fk-measurable function.

Let P (k,i) and E(k,i) denote the probability measure and
the corresponding expectation when the change occurs at t =
k and happens on the data stream S = i. For a measurable
event F , define a probability measure P (k) as

P (k)(F ) :=

M−1∑
i=0

P (k,i)(F )P (S = i) =
1

M

M−1∑
i=0

P (k,i)(F ),

i.e., P (k) is the probability measure that averaged over the
prior of S when the change occurs at t = k. Denote E(k) as
its corresponding expectation. Let P (∞) and E(∞) denote the
probability measure and the corresponding expectation when
t = ∞.

The performance of a detection procedure (τ, ϕ) is evalu-
ated by two performance metrics: the conditional average de-
tection delay and the average run length to false alarm. These
metrics are defined as

CADD(τ, ϕ) = sup
t≥1

E(t)[τ − t|τ ≥ t], (3)

ARL(τ, ϕ) = E(∞)[τ ]. (4)

The observer aims to find the optimal detection procedure
(τ, ϕ) that solves the following optimization problem, which
is known as the Pollak’s formulation in non-Bayesian QCD
framework:

minimize(τ,ϕ) CADD(τ, ϕ),

subject to ARL(τ, ϕ) ≥ γ.

That is, the observer aims to find a detection procedure that
minimize the detection delay while keeps ARL controlled by
a constant γ.
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3. METHOD AND PERFORMANCE

In this section, we propose a detection procedure and show its
asymptotic optimality for the proposed problem. In particular,
we propose the following procedure:

Ck = max{Ck−1, 0}+ log
f1(Y

sk
k )

f0(Y
sk
k )

with C0 = 0, (5)

ϕk =

{
1 if Ck < 0
0 otherwise , (6)

τc = inf{k > 0 : Ck ≥ logB}, (7)

in which f0 and f1 are probability density functions (pdfs) of
P0 and P1, respectively; B is a properly selected threshold
such that the ARL constraint is satisfied.

There are a few comments on the above detection proce-
dure. Firstly, Ck is known as the CUSUM statistic of the ob-
servation sequence. In the proposed procedure, when Ck < 0,
the observer switches to observe the next data stream and re-
sets the CUSUM statistic to 0; when Ck ≥ logB, the observ-
er stops the detection procedure and raises an alarm for the
detection of the change-point. Since the log-likelihood ratio
log f1(Y

sk
k )/f0(Y

sk
k ) has positive expectation when Y sk

k is
generated by f1 and has negative expectation when Y sk

k is by
f0, Ck tends to increase if the change has occurred on the cur-
rent observing data stream and tends to decrease if the change
has not occurred yet.

It is well known that the CUSUM procedure is asymp-
totically optimal for the classic Pollak’s QCD problem. In
classic setting, there is only one data stream and its distri-
bution changes at an unknown time; hence there has no data
stream switching rule involves. However, in our scenario, Ck

and ϕk are coupled procedures. On the one hand, switching
to observe another data stream substantially affects the distri-
bution of observations, which further affects the value of Ck.
On the other hand, ϕk is determined by the event {Ck < 0}.
Since there is a positive probability that the observer makes
a decision of switching to next data stream when current ob-
serving one is f1 distributed, the observation sequence in our
problem may subject to several abrupt changes in its distribu-
tion. This is the key difference from the classic non-Bayeisan
QCD problem.

To study the performance of the proposed procedure, we
need to introduce some notations. We call the observer fin-
ishes one scanning round whenever he abandons the last data
stream and switches back to observe the first data stream a-
gain. Obviously, each data stream has been observed once
when a scanning round is completed. Define

C
(i)
n,k := max

{
C

(i)
n,k−1, 0

}
+ log

f1(Y
i
k )

f0(Y i
k )

with C
(i)
n,0 = 0 (8)

as the CUSUM statistic for the ith data stream at the nth s-
canning round. The time index k starts from the beginning of
the nth visit to the ith data stream. Define

κ(i)
n := inf

{
k ≥ 0 : C

(i)
n,k /∈ [0, logB)

}
. (9)

Hence, the observer either switches to another data stream or
stops the detection procedure at κ(i)

n . The detection procedure
is stopped when the upper bound B is exceeded. We denote
N as the last scanning round, specifically,

N := inf
{
n ≥ 0 : C

(i)

n,κ
(i)
n

≥ logB

for some i = 0, 1, . . . ,M − 1} .

Let I be the index of the data stream at which the detection
procedure is terminated, i.e.,

I := inf

{
i ∈ {0, 1, . . . ,M − 1} : C

(i)

N,κ
(i)
N

≥ logB

}
.

Then, it is worth noticing that

τc =

N−1∑
n=1

M−1∑
i=0

κ(i)
n +

I∑
i=0

κ
(i)
N . (10)

Figure 1 illustrates the relationship of aforementioned quanti-

Fig. 1. The relationship of the quantities involved in the pro-
posed algorithm. There are three independent data streams.
The observer terminates the detection procedure on his third
visit of data stream 1; hence the total scanning round is N = 3
and the index of terminal data stream is I = 1.

ties. In order to bound CADD, we define the following quan-
tity

CADD(M−1)(τc, ϕ) :=

E

[
N−1∑
n=1

M−1∑
i=0

κ(i)
n +

I∑
i=0

κ
(i)
N

∣∣∣∣∣t = 1, S = M − 1

]
− 1.

It is easy to see that CADD(M−1)(τc, ϕ) defined above is the
conditional average detection delay of the proposed procedure
(τc, ϕ) given that the change happens on the last sequence at
the very beginning. The following lemma provides an upper
bound for CADD(M−1)(τc, ϕ).

Lemma 3.1. By setting B = γ, as γ → ∞, we have

CADD(M−1)(τc, ϕ) ≤
E1

[
κ
(M−1)
1

]
P1

(
C

(M−1)

1,κ
(M−1)
1

≥ logB

) (1 + o(1))

=
| log γ|

D(f1||f0)
(1 + o(1)), (11)

in which D(f1||f0) is the Kullback-Leibler (KL) divergence
from f1 to f0.
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Proof Outline: The last equality in (11) follows the per-
formance of CUSUM in the classic non-Bayeisan setting (See
Theorem 6.5 in [10]). In the following, we outline the proof
for the first inequality in (11). For the proposed procedure
(τc, ϕ), there is a chance that the observer does not stop on
the last data stream, i.e., {I ̸= M − 1} has a positive prob-
ability. To bound τc, we consider another stopping time τ̃c,
at which the CUSUM statistic of the last data stream exceeds
the upper threshold. In particular, we define

Ñ := inf
{
n ≥ 0 : C

(M−1)

n,κ
(M−1)
n

≥ logB
}
,

τ̃c :=
Ñ∑

n=1

M−1∑
i=0

κ(i)
n .

Obviously, τc ≤ τ̃c since I ≤ N ≤ Ñ .
Given {t = 1, S = M −1}, the samples from the ith data

stream are i.i.d. with pdf f0 for i = 0, . . . ,M − 2, and are
i.i.d. with pdf f1 for i = M−1. Let νn =

∑M−1
i=0 κ

(i)
n . Hence

ν1, ν2, . . . , νn is a sequence of i.i.d. random variables. The
detection procedure is reset whenever a new scanning round
begins, then it is easy to see that Ñ is a geometric random
variable with

P (Ñ = n) = [1− P1 (F0)]
n−1P1 (F0) , (12)

in which F0 =

{
C

(M−1)

1,κ
(M−1)
1

≥ logB

}
. Then, using Wald’s

identity, we have

CADD(M−1)(τ̃c, ϕ) = E

 Ñ∑
n=1

νn

∣∣∣∣∣t = 1, S = M − 1

− 1

= E
[
Ñ
∣∣t = 1, S = M − 1

]
E
[
ν1
∣∣t = 1, S = M − 1

]
− 1

=
E1

[
κ
(M−1)
1

]
+ E0

[∑M−2
i=1 κ

(i)
1

]
P1

(
C

(M−1)

1,κ
(M−1)
1

≥ B

) − 1. (13)

As log f1(x)/f0(x) has negative mean value if x is distribut-
ed according to f0, then the conclusion follows the fact that
E0

[
κ
(i)
1

]
< ∞ for i = 0, . . . ,M − 2. �

We have the following result for the proposed strategy.

Theorem 3.2. When γ → ∞, by setting B = γ, we have
E(∞)[τc] ≥ γ, and

E(t)[τc − t|τc ≥ t] ≤ | log γ|
D(f1||f0)

(1 + o(1)). (14)

Proof Outline: When false alarm occurs, samples in all
data streams are generated by f0. Hence, observations {Y sk

k }
are i.i.d. distributed with pdf f0 regardless the data stream
switching rule, which is the same as the case in the classic
non-Bayesian QCD. Corresponding conclusion indicates that
the ALR constraint can be satisfied by setting B = γ.

To analyze CADD, it is worth noticing that the worst case
detection delay happens when {t = 1, S = M − 1}. In

this scenario, the detection statistic has the smallest value and
the observer has the furthest distance from the affected data
streams. Hence CADD(M−1)(τc, ϕ) provides an upper bound
for CADD(τc, ϕ). Then, Lemma 3.1 applies. �

In this paper, we do not provide a theoretic study for the
tightest lower bound of CADD for the proposed problem,
which could be a very challenging task in general. Instead,
we use the performance of the classic Pollak’s problem as
a benchmark. The well known result established in [11]
indicates that CADD in classic setup is lower bounded by
| log γ|/D(f1||f0)(1 + o(1)). In this sense, our proposed
detection procedure is asymptotically optimal as γ → ∞.

4. NUMERICAL SIMULATION

In this section, we provide a numerical example to illustrate
the asymptotic optimality of the proposed detection proce-
dure. In the simulation, we set five independent data streams,
and set the pre-change distribution f0 as N (0, 1) and the post-
change distribution f1 as N (0, 1.15). The change randomly
happens on one of these five data streams. The simulation re-
sult is illustrated in Figure 2, which reflects the relationship
between CADD and ARL. The black dot line is the theoretic
asymptotic lower bound for the classic non-Bayeisan QCD,
which is calculated as | log γ|/D(f1||f0). The blue solid line
with squares is the performance of the proposed method. As
we can see from the figure, the blue solid line tends to be par-
allel to black dot line as γ → ∞, which indicates that the
proposed detection procedure is asymptotically optimal since
the difference between the black dot line and the blue solid
line is negligible when the detection delay goes to infinity.
This confirms our theoretic result presented in Theorem 3.2.
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Fig. 2. CADD vs. ARL

5. CONCLUSION

In this paper, we have studied the problem of non-Bayesian
QCD over multiple data streams with sequential scanning s-
trategy. We have proposed a data stream switching strategy
and a stopping rule based on the CUSUM statistic. The pro-
posed algorithm has been shown to be asymptotically optimal
as ARL goes to infinity.
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