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ABSTRACT

The paper deals with minimax optimal statistical tests for two
composite hypotheses, where each hypothesis is defined by a non-
parametric uncertainty set of feasible distributions. It is shown that
for every pair of uncertainty sets of the f -divergence-ball type, a
pair of uncertainty sets of the density-band type can be constructed,
which is equivalent in the sense that it admits the same pair of least
favorable distributions. This result implies that robust tests under
f -divergence-ball uncertainty, which are typically only minimax op-
timal for the single sample case, are also fixed sample size minimax
optimal with respect to the equivalent density-band uncertainty sets.

Index Terms— Hypothesis testing, robust detection, distribu-
tional uncertainty, f -divergence, density bands

1. INTRODUCTION

A statistical test for two composite hypotheses is called minimax
optimal if it minimizes the maximum risk over the two correspond-
ing sets of feasible distributions. In the context of robust statistics,
these sets are referred to as uncertainty sets. In contrast to adaptive
procedures [1], the minimax approach provides strict guarantees on
the error probabilities for all feasible distributions. Moreover, mini-
max tests are often easy to implement since they typically reduce to
an optimal test for two simple hypotheses, where each hypothesis is
represented by a least favorable distribution.

A common way of specifying uncertainty sets is via a neigh-
borhood around a nominal distribution, which represents an ideal
system state or model [2]. In many works on robust detection, the
use of f -divergence-balls has been proposed as a useful and versatile
model to construct such neighborhoods [3–10]. In contrast to outlier
models, such as ε-contamination [11], f -divergence balls do not al-
low for arbitrarily large deviations from the nominals and, therefore,
have been argued to better represent scenarios where the shape of a
distribution is subject to uncertainty, but there are no gross outliers
in the data [5].

In order to present the result in this paper, the concept of single
sample and fixed sample size tests needs to be introduced. A sin-
gle sample test is based on the observation of a single, but possibly
vector-valued, random variable X1. Consequently, the uncertainty
sets are defined in terms of all possible joint distributions of the el-
ements of X . Such an uncertainty model is suitable in some cases,
but more often the observations are obtained by repeatedly perform-
ing independent random experiments so that the test is based on a
sequence of independent random variables X1, . . . , XN , N > 1.
By definition, this independence constraint cannot be incorporated
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into a single sample test. Hence, tests whose observations are real-
izations of multiple independent random variables need to be con-
sidered separately. In order to highlight the difference to tests whose
sample size is random [12], they are referred to as fixed sample size
tests in what follows.

For most commonly used uncertainty models—including the
density-band model, which will be discussed in detail later on—it
can be shown that a single sample minimax optimal test is also
fixed sample size minimax optimal. More precisely, the least fa-
vorable distributions for X1 in the single sample case are also least
favorable for all X1, . . . , XN in the fixed sample size case. How-
ever, in general, this does not hold true for uncertainty sets of the
f -divergence-ball type, where the fixed sample size minimax opti-
mal solution is typically intractable. However, a commonly applied
heuristic is to use the single sample least favorable distributions for
the fixed sample size case anyhow, regardless of the fact that this
extension does not hold in theory; compare [10, Sec. V.A]. Tests
constructed this way are referred to as single sample minimax op-
timal tests with repeated observations. Evidently, such tests are no
longer minimax optimal. However, in practice, it can be observed
that they are still robust, meaning that they meet the specified error
probabilities for most if not all feasible distributions.

In this paper, the favorable robustness properties of single sam-
ple minimax optimal tests with repeated observations are explained
in a rigorous manner. It is shown that they are indeed fixed sam-
ple size minimax optimal, but for a density-band uncertainty model
instead of the original f -divergence-ball model. That is, single-
sample minimax optimal tests can be applied to repeated observa-
tions without sacrificing minimax optimality, if one is willing to ac-
cept a change in the uncertainty model. This result is proved by
showing that for every f -divergence-ball model, there exists and
equivalent density-band model that admits the same single sample
minimax optimal solution. However, for the density-band model,
this solution is known to be fixed sample size optimal as well so that
it automatically extends to the case of repeated observations.

The paper is organized as follows: a brief review of minimax-
optimal detection is given in Section 2. The two uncertainty models
of interest, i.e., f -divergence balls and density bands, are introduced
in Section 3. The main result is stated and proved in Section 4,
followed by a brief discussion in Section 5. An illustrative example
is shown in Section 6, which also concludes the paper.

2. MINIMAX OPTIMAL DETECTION

The single sample case is considered first. Let (X ,F) be a mea-
surable space and let X1 be a (X ,F)-valued random variable that
is distributed according to a probability measure (distribution) P .
Throughout the paper it is assumed that all distributions on (X ,F)
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have a continuous density function with respect to some σ-finite ref-
erence measure µ. The set of all distributions on (X ,F) that admit
this property is denoted byMµ.

The goal of a simple, non-robust binary hypothesis test is to de-
cide between the two hypotheses

H0 : P = P0, H1 : P = P1,

where P0, P1 ∈ Mµ are two given distributions. The test is defined
by a decision d ∈ {0, 1} and a possibly randomized decision rule
δ : X → [0, 1], where δ(x) denotes the conditional probability to
decide forH1, given the observationX1 = x. The set of all decision
rules is denoted by ∆. The type I and type II error probabilities are
given by

P0[d = 1] = EP0 [ δ(X) ],

P1[d = 0] = EP1 [1− δ(X)].

The optimal decision rule δ∗ for the simple binary hypothesis test is
a threshold comparison of the likelihood ratio, i.e.,

δ∗(x) =


1, l(x) > λ

κ, l(x) = λ

0, l(x) < λ

,

where λ > 0 is the threshold value, κ ∈ [0, 1] can be chosen arbi-
trarily, and l(x) denotes the likelihood ratio

l(x) =
p1(x)

p0(x)
.

The likelihood ratio test is optimal in a very general sense [13]. In
particular, it minimizes the weighted sum error probability, i.e., it
solves

min
δ∈∆

EP1 [ δ(X) ] + λEP0 [1− δ(X)]. (1)

In robust detection, the distribution under each hypothesis is as-
sumed not to be known exactly. The distributional uncertainty is
modeled by two disjoint sets P0,P1 ⊂ Mµ so that the hypotheses
become

H0 : P ∈ P0, H1 : P ∈ P1.

The minimax problem corresponding to (1) is thus given by

min
δ∈∆

max
H0∈P0
H1∈P1

EH1 [ δ(X) ] + λEH0 [1− δ(X)]. (2)

Problem (2) is central to robust detection. By definition, its solution
is minimax optimal with respect to the weighted sum of error proba-
bilities, but it can also be shown to be minimax optimal in the sense
of Neyman–Pearson and the Baysian sense. This property is fixed in
the following definition.

Definition 1. A triplet (δ∗, Q0, Q1) that solves (2) for a given λ > 0
is called single sample minimax optimal with respect to the threshold
λ and the uncertainty sets P0, P1. This is written as

(δ∗, Q0, Q1) ∈ {P0,P1}∗λ.
In [11] and [14] it is shown that if the solution of (2) is indepen-

dent of the threshold λ, it is also minimax optimal for fixed sample
size tests with arbitrary thresholds and arbitrary sample sizes. This
property is fixed in the next definition.

Definition 2. A triplet (δ∗, Q0, Q1) that jointly solves (2) for all
λ > 0 is called fixed sample size minimax optimal with respect to
P0, P1. This is written as

(δ∗, Q0, Q1) ∈ {P0,P1}∗.

3. UNCERTAINTY SETS

Two types of uncertainty sets are introduced in this section. The first
one is the f -divergence-ball model, which specifies uncertainty sets
in terms of a maximum feasible distance from a nominal distribution
and allows the use of arbitrary f -divergences to define this distance.
Formally, f -divergence-ball uncertainty sets are of the form

Pf (P, ε) = {H ∈Mµ : Df (H‖P ) ≤ ε}, (3)

where P denotes the nominal distribution and Df denotes the f -
divergence induced by the function f , i.e.,

Df (H‖P ) =

∫
X
f

(
dH

dP
(x)

)
dP (x)

=

∫
X
f

(
h(x)

p(x)

)
p(x) dµ(x),

where f : R≥0 → R is convex and satisfies f(1) = 0. The def-
inition of the f -divergence ball in terms of Df (H‖P ) instead of
Df (P‖H) is arbitrary since for every feasible function f it holds
that Df (P‖H) = Df̃ (H‖P ), with f̃(x) = f( 1

x
)x.

Owing to the mild constraints on f , uncertainty sets of the form
(3) offer a great amount of flexibility and have attracted increased at-
tention in recent years. In [5] and [10], minimax optimal tests based
on the Kullback–Leibler divergence were derived under varying as-
sumptions. Minimax optimal tests have also been derived for the
squared Hellinger distance [6,7], the total variation distance [8], and
α-divergences [9, 10]. However, a disadvantage of robust tests with
f -divergence-ball uncertainty is that no fixed sample size minimax
optimal solution is guaranteed to exist. In fact, most of the works
cited above only consider the single sample case.

The second type of uncertainty model is the density-band model.
In a robust detection context, it was first proposed by Kassam [15]
and covers sets of the form

Pb(P
′, P ′′) = {H ∈Mµ : p′ ≤ h ≤ p′′}, (4)

where P ′, P ′′ are nonnegative measures on (X ,F) that admit den-
sities p′, p′′ with respect to µ and satisfy

P ′(X ) ≤ 1, P ′′(X ) ≥ 1, and 0 ≤ p′ ≤ p′′.

In words, the density-band model restricts the true density to lie
within a band specified by p′ and p′′. Similar to the choice of f in
the f -divergence-ball model, the choice of P ′ and P ′′ allows for a
priori knowledge about the type of contamination to be incorporated
into the model. Therefore, although it is still based on the concept
of outliers, the band model can capture a much larger variety of con-
tamination types and mismatches than the standard ε-contamination
model. Another useful property of the density-band model is that
for every pair of uncertainty sets of the form (4), a fixed sample
size minimax optimal test is guaranteed to exist. Moreover, the cor-
responding least favorable densities can be calculated in a generic
manner using a simple and efficient algorithm. See [14] for a more
detailed discussion of the band model and the calculation of its least
favorable densities.

In the next section, it is shown in how far the two uncertainty
models can be considered equivalent in the single sample case and
how the density-band model can be used to construct fixed sample
size minimax optimal tests from tests that are only single sample size
minimax optimal under f -divergence-ball uncertainty.
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4. MAIN RESULT

In this section, the main result of the paper is stated and proved. A
more detailed discussion is deferred to Section 5.

Theorem. Let Pf0(P0, ε0) and Pf1(P1, ε1) be two uncertainty sets
of the form (3). If it holds that

(δ∗, Q0, Q1) ∈ {Pf0(P0, ε0) , Pf1(P1, ε1)}∗λ,
then there exist nonnegative scalars a0 ≤ b0 and a1 ≤ b1 such that

(δ∗, Q0, Q1) ∈ {Pb(a0P0, b0P0) , Pb(a1P1, b1P1)}∗.
In words, the theorem states that if (δ∗, Q0, Q1) is single sam-

ple minimax optimal for an f -divergence-ball uncertainty model, a
density-band model can be constructed from scaled versions of the
nominal densities such that (δ∗, Q0, Q1) is fixed sample size min-
imax optimal with respect to this band model. A proof is detailed
below.

Proof. Let P0, P1, f0, f1, ε0, ε1, and λ be given. Rewriting the
optimization problem (2) in terms of the densities and with explicit
constraints yields

max
h0>0
h1>0

min
δ∈∆

∫
X
h1 δ + λh0(1− δ) dµ s.t. (5)

∫
X
f0

(
h0

p0

)
p0 dµ ≤ ε0,

∫
X
f1

(
h1

p1

)
p1 dµ ≤ ε1 (6)∫

X
h0 dµ = 1,

∫
X
h1 dµ = 1. (7)

By assumption, (δ∗, Q0, Q1) solves this minimax problem, which
implies that (δ∗, Q0, Q1) is a saddle point of (5). This, in turn, im-
plies that (δ∗, Q0, Q1) satisfies the corresponding Karush–Kuhn–
Tucker conditions, which are first order necessary conditions for op-
timality [16]. In particular, stationarity of the saddle point solution
implies that scalars η0, η1 and nonnegative scalars ν0, ν1 exists such
that

λ(1− δ∗) = ν0f
′
0

(
q0
p0

)
− η0, (8)

δ∗ = ν1f
′
1

(
q1
p1

)
− η1, (9)

δ∗ =


1, q1 > λq0

κ ∈ (0, 1), q1 = λq0

0, q1 < λq0

, (10)

where f ′0, f ′1 denote the (sub)derivatives of f0 and f1, η0, η1 denote
the Lagrange multipliers corresponding to the constraints (7), and
ν0, ν1 denote the Lagrange multipliers corresponding to the con-
straints (6). Since f0 and f1 are convex, their (sub)derivatives are
nondecreasing. Moreover, the inverse functions g0 and g1, which are
implicitly defined by

g0(f ′0(x)) = x and g1(f ′1(x)) = x ∀x ∈ R≥0,

exist and are nondecreasing as well. Solving (8) and (9) for q0 and
q1 yields

q0 = g0

(
λ(1− δ∗) + η0

ν0

)
p0, (11)

q1 = g1

(
δ∗ + η1

ν1

)
p1. (12)

Combining (10), (11) and (12), it follows that the least favorable
densities are of the form

q0 =


b0 p0, δ∗ = 0
1
λ
q1, δ∗ ∈ (0, 1)

a0 p0, δ∗ = 1

(13)

and

q1 =


a1 p1, δ∗ = 0

λ q0, δ∗ ∈ (0, 1)

b1 p1, δ∗ = 1

, (14)

where

a0 = g0

(
η0

ν0

)
≤ b0 = g0

(
λ+ η0

ν0

)
(15)

and

a1 = g1

(
η1

ν1

)
≤ b1 = g1

(
1 + η1

ν1

)
. (16)

Note that since q0 and q1 are valid densities, a0, b0 and a1, b1 are
nonnegative. The next step of the proof is to show that the least
favorable densities in (13) and (14) can be written as

q0 = min
{
b0p0 , max

{
1
λ
q1 , a0p0

}}
, (17)

q1 = min
{
b1p1 , max

{
λq0 , a1p1

}}
. (18)

Only (17) is shown here since the proof for (18) can be given analo-
gously. From (10) and (13) it follows that on {x ∈ X : δ(x) = 0}

q1 < λq0 ⇒ 1

λ
q1 < q0 = b0p0, (19)

on {x ∈ X : δ(x) ∈ (0, 1)}

q1 = λq0 ⇒ 1

λ
q1 = q0, (20)

and on {x ∈ X : δ(x) = 1}

q1 > λq0 ⇒ 1

λ
q1 > q0 = a0p0. (21)

Combining (19), (20), and (21) yields (17). From [14, Theorem 4],
it follows immediately that (17) and (18) are fixed sample size least
favorable for a density-band model with bounds

p′0 = a0p0 ≤ b0p0 = p′′0 ,

p′1 = a1p1 ≤ b1p1 = p′′1 .

5. DISCUSSION

The result presented in the previous section states that every single
sample minimax optimal test under f -divergence-ball uncertainty
is fixed sample size minimax optimal under the equivalent density-
band uncertainty. This not only makes it possible to use single sam-
ple results for fixed sample size tests without sacrificing minimax op-
timality, but also to specify the exact sets of distributions for which
the minimax property holds. In this sense, the theorem lifts the f -
divergence-ball model to the same level of usefulness as the clas-
sic outlier models, whose single sample results automatically carry
over to the fixed sample case. In addition to this generalization, the
fact that for every f -divergence-ball model an equivalent density-
band model can be constructed offers some deeper insights and also
suggests an alternative approach to the design of robust tests under
f -divergence-ball uncertainty.
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One useful aspect of the equivalent band model is that it simpli-
fies comparing the amount and type of uncertainty that is allowed for
by different f -divergence-ball models. Such comparisons are non-
trivial since the ε-tolerances in (3) do not directly translate to con-
tamination ratios and might be of different scales altogether. While,
for example, the Kullback–Leibler divergence can take on any non-
negative value, the Hellinger distance is bounded between zero and
one. In such cases, one cannot simply compare the ε-tolerances in
order to compare the maximum amount of uncertainty in the distri-
butions. The corresponding band model, however, offers a way to
make such comparisons possible. The lower bounds on the density
functions, a0p0 and a1p1, determine how much probability mass the
nominal distributions contribute at least, namely a0 and a1. Con-
sequently, the outliers can at most contribute the remaining proba-
bility masses 1 − a0 and 1 − a1, which can hence be interpreted
as contamination ratios. The larger they are, the more uncertainty
a model allows. On the other hand, the upper bounds, b0p0 and
b1p1, offer an insight into what type of uncertainty is allowed. For
b0, b1 � 1 the contamination is almost unconstrained, which corre-
sponds to gross outliers. For b0, b1 ≈ 1, the outlier distributions are
close to the nominals, which corresponds to more subtle model mis-
matches. In general, the outlier distributions under Hi, i ∈ {0, 1},
are constrained to lie within the set{

H ∈Mµ : h ≤ bi − ai
1− ai

pi

}
.

This interpretation of a density-band model as a constrained ε-
contamination model often offers a useful intuition for the amount
and type of contamination that cannot be obtained by inspection of
the f -divergence-ball model.

There are several ways to determine the coefficients a0, b0 and
a1, b1 in practice. If expressions for the least favorable distributions
can already be found in the literature, the coefficients can be deter-
mined by a simple comparison with the expressions in (13) and (14).
If the least favorable densities are unknown, the KKT conditions (8)–
(10) can be solved for ν0 ,ν1 and η0, η1. The scaling coefficients can
then be calculated according to (15) and (16). In practice, however,
this approach might be prohibitively complex.

An alternative to solving the KKT conditions for ν0, ν1 and
η0, η1 is to solve them directly for a0, b0 and a1, b1. From the result
in the previous section, it follows that the least favorable densities
are of the form (17) and (18). For given scaling coefficients a0, b0
and a1, b1, these equations can be solved for q0 and q1 by finding
a threshold λ so that the right hand sides of (17) and (18) are valid
densities, i.e., they integrate to one. Finally, an outer search over
a0, b0 and a1, b1 can be performed such that the primal constraints
are fulfilled, i.e.,∫

X
f0

(
q0
p0

)
p0 dµ = ε0 and

∫
X
f1

(
q1
p1

)
p1 dµ = ε1.

This approach can be expected to be less efficient than a solution that
exploits properties of a given function f , but is applicable in general
and does not require prior analysis of the problem.

Yet another option to determine the scaling coefficients is to di-
rectly solve the primal problem (5) using a suitable convex optimiza-
tion algorithm. Even if the latter does not calculate the dual variables
explicitly, a0, b0 and a1, b1 can be obtained from the ratio of the least
favorable and the nominal densities

q0
p0

= min

{
b0 , max

{
1

λ

q1
p0
, a0

}}
,

q1
p1

= min

{
b1 , max

{
λ
q0
p1
, a1

}}
.

(22)
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Fig. 1. Least favorable densities and equivalent density bands for un-
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.

By inspection of (22), the scaling coefficients can be identified form
the regions where the likelihood ratio is constant.

The result in Section 4 also motivates further research into how
exactly the two uncertainty models are related. Given equivalent f -
divergence balls and density bands, does one uncertainty set contain
the other, i.e., is one model a relaxation of the other one? Does ev-
ery band model whose bounds are constructed by scaling a nominal
density admit an equivalent f -divergence-ball model? If so, how
can the corresponding function f be determined? Another question
that might be asked is, whether similar equivalences exist for other
types of uncertainty models as well and in how far there is a hierar-
chy between these models, i.e., whether the set of all possible least
favorable distributions under one model is a sub- or super-set of all
possible least favorable distributions under another model.

6. EXAMPLE

In order to highlight the connection to existing results, we consider
the example from [10, Sec. VI.A], where the nominal distributions
underH0 andH1 are chosen as P0 = N (−1, 1) and P1 = N (1, 2),
respectively, and N (m,σ2) denotes a Gaussian distribution with
mean m and variance σ2. The Kullback–Leibler divergence is used
as a distance measure, i.e., f0(x) = f1(x) = − log(x), the toler-
ances are chosen as ε0 = 0.03, ε1 = 0.02, and the likelihood ratio
threshold is set to λ = 1. Using Theorem 2 in [10], the least favor-
able densities for this model can be calculated efficiently by solving
two integral equations. The coefficients for the corresponding band
model can be identified by comparing (6) in [10] to (13) and (14)
in this paper. For the numerical values given above, they calculate
to a0 ≈ 0.9047, a1 ≈ 2.2519, b0 ≈ 0.8319, and b1 ≈ 1.3009.
The least favorable densities and the equivalent density bands are
depicted in Fig. 1. Interestingly, the difference in the radii of the f -
divergence balls is not reflected in the contamination ratio, which is
smaller under H0 (≈ 10%) than under H1 (≈ 17%). However, the
band underH0 is wider, meaning that it allows for larger deviations
from the nominal distribution. UnderH1, the contamination ratio is
higher, but the outlier distribution is much more restricted.

This example illustrates how existing results on robust tests un-
der f -divergence-ball uncertainty can be used to construct fixed sam-
ple size minimax optimal tests for the equivalent density-band un-
certainty sets and how the latter provide additional insight into the
amount and type of contamination induced by the uncertainty model.

4402



7. REFERENCES

[1] O. Zeitouni, J. Ziv, and N. Merhav, “When is the generalized
likelihood ratio test optimal?,” IEEE Transactions on Informa-
tion Theory, vol. 38, no. 5, pp. 1597–1602, 1992.

[2] S. A. Kassam and H. V. Poor, “Robust techniques for signal
processing: A survey,” Proceedings of the IEEE, vol. 73, no.
3, pp. 433–481, 1985.

[3] A. L. McKellips and S. Verdu, “Worst case additive noise
for binary-input channels and zero-threshold detection under
constraints of power and divergence,” IEEE Transactions on
Information Theory, vol. 43, no. 4, pp. 1256–1264, 1997.

[4] A. L. McKellips and S. Verdu, “Maximin performance
of binary-input channels with uncertain noise distributions,”
IEEE Transactions on Information Theory, vol. 44, no. 3, pp.
947–972, 1998.

[5] B. C. Levy, “Robust Hypothesis Testing With a Relative En-
tropy Tolerance,” IEEE Transactions on Information Theory,
vol. 55, no. 1, pp. 413–421, 2009.

[6] G. Gül and A. M. Zoubir, “Robust hypothesis testing for
modeling errors,” in 2013 IEEE International Conference
on Acoustics, Speech and Signal Processing, 2013, pp. 5514–
5518.

[7] G. Gül and A. M. Zoubir, “Robust hypothesis testing with
squared Hellinger distance,” in Proc. of the 22nd European
Signal Processing Conference (EUSIPCO), g, Ed., 2014, pp.
1083–1087.

[8] G. Gül and A. M. Zoubir, “Robust hypothesis testing with
composite distances,” in 2014 IEEE Workshop on Statistical
Signal Processing (SSP), 2014, pp. 432–435.

[9] G. Gül and A. M. Zoubir, “Robust Hypothesis Testing with α
-Divergence,” IEEE Transactions on Signal Processing, vol.
64, no. 18, pp. 4737–4750, Sept 2016.

[10] G. Gül and A. M. Zoubir, “Minimax Robust Hypothesis Test-
ing,” IEEE Transactions on Information Theory, vol. 63, no. 9,
pp. 5572–5587, 2017.

[11] P. J. Huber, “A Robust Version of the Probability Ratio Test,”
Annals of Mathematical Statistics, vol. 36, no. 6, pp. 1753–
1758, 1965.

[12] A. Wald, Sequential Analysis, Wiley, Hoboken, New Jersey,
USA, 1947.

[13] R. Christensen, “Testing Fisher, Neyman, Pearson, and Bayes,”
The American Statistician, vol. 59, no. 2, pp. 121–126, 2005.

[14] M. Fauß and A. M. Zoubir, “Old Bands, New Tracks—
Revisiting the Band Model for Robust Hypothesis Testing,”
IEEE Transactions on Signal Processing, vol. 64, no. 22, pp.
5875–5886, 2016.

[15] S. A. Kassam, “Robust hypothesis testing for bounded classes
of probability densities (Corresp.),” IEEE Transactions on In-
formation Theory, vol. 27, no. 2, pp. 242–247, 1981.

[16] M. Guignard, “Generalized Kuhn–Tucker Conditions for
Mathematical Programming Problems in a Banach Space,”
SIAM Journal on Control, vol. 7, no. 2, pp. 232–241, 1969.

4403


