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ABSTRACT

The problem of sequential multiple hypothesis testing in a

distributed sensor network is considered and two algorithms

are proposed: the Consensus + Innovations Matrix Sequential

Probability Ratio Test (CIMSPRT) for multiple simple hy-

potheses and the robust Least-Favorable-Density-CIMSPRT

for hypotheses with uncertainties in the corresponding distri-

butions. Simulations are performed to verify and evaluate the

performance of both algorithms under different network con-

ditions and noise contaminations.

Index Terms— sequential detection, multiple hypothesis

testing, distributed detection, robustness, distributional uncer-

tainties

1. INTRODUCTION

In sequential detection, the goal is to make a reliable decision

for one out of two or more hypotheses using as few measure-

ments as possible. This is an important problem that emerges

in modern real-time applications—especially in distributed

setups—such as intelligent traffic control, smart homes, or

video surveillance [1].

In this work, we are concerned with the design of sequen-

tial detectors for multiple hypotheses in a distributed sensor

network. In order to be suitable for real-life applications,

where the assumption of Gaussianity is often violated, the

detectors should be insensitive to distributional uncertainties.

The latter can, for example, be caused by outliers in the ob-

servations, insufficient knowledge about the observed phe-

nomenon, or mismatches in the mathematical model. We pro-

pose the Consensus + Innovations Matrix Sequential Proba-

bility Ratio Test (CIMSPRT) as a fusion of the centralized

Matrix Sequential Probability Ratio Test (MSPRT) [1] for

multiple hypotheses and the distributed Consensus + Inno-

vations Sequential Probability Ratio Test (CISPRT) [2] for

binary hypotheses. In a next step, we robustify this algorithm

using the concept of least-favorable densities (LFDs) [3, 4].

The paper is structured as follows. In Section 2 we formu-

late the problem of multiple hypothesis testing in Gaussian

and non-Gaussian environments. Section 3 reviews sequen-

tial binary detection in a distributed sensor network by reca-

pitulating Wald’s Sequential Probability Ratio Test (SPRT) as

well as a generalized version of the CISPRT [3, 5]. Subse-

quently, we present the MSPRT as a solution for sequential

multiple hypothesis testing and propose the CIMSPRT as a

fusion of the CISPRT and the MSPRT in Section 4. Fur-

thermore, we give an approximation for its expected stopping

time. In Section 5, we develop the robust LFD-CIMSPRT.

The simulations in Section 6 verify and evaluate the perfor-

mance of our algorithms under different network and envi-

ronmental conditions. Finally, conclusions are drawn in Sec-

tion 7.

2. PROBLEM FORMULATION

Let (X1, . . . , Xn) be a sequence of independent and identi-

cally distributed random variables with common distribution

P . Throughout the paper we assume that P admits a con-

tinuous density p. In a network of N agents, which can be

modeled as an undirected graph G = (V , E) with the sets of

agents V and edges E , the closed neighborhood of agent k is

given by Nk = {l ∈ V | (k, l) ∈ E} ∪ {k}. A simple way

to define the neighborhood is by considering a radius dmax

within which nodes can communicate with each other.

In a distributed test for multiple simple hypotheses, each

agent needs to decide between M > 1 hypotheses of the form

Hm : P = Pm, m = 1, . . . ,M.

We consider the case where each agent k should decide which

of the M known signals of interest xm(t) ∼ N (0, σ2

m) is

active based on its measurement yk(t) at time instant t as well

as information from its neighbors. The hypotheses become

Hm : yk(t) ∼ N (0, σ2

m + σ2

n), m = 1, . . . ,M,

where σ2
n is the variance of a zero-mean white Gaussian noise

process, which is assumed to be independent of xm(t).
In practice, however, the assumption of Gaussian mea-

surement noise often does not hold. In order to take this ele-

ment of uncertainty into account, the hypothesis test is trans-
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formed into a composite one between M disjoint sets of fea-

sible distributions Pm so that the hypotheses become

Hm : P ∈ Pm, m = 1, . . . ,M.

The idea of robustness is to design a test that works reliably

for all feasible distributions in the uncertainty sets Pm. For

binary fixed-sample-size tests, the minimax optimal solution

to this problem is a likelihood ratio test between the LFDs

[6,7]. Although strict minimax optimality does not carry over,

we propose to use the pairwise LFDs to robustify the MSPRT

and the CIMSPRT. This is in line with the approach of the

MSPRT to perform multiple pairwise tests in parallel, as we

will see in Section 4.

3. REVIEW OF DISTRIBUTED SEQUENTIAL

BINARY HYPOTHESIS TESTING

3.1. The Sequential Probability Ratio Test (SPRT)

In the single-sensor binary Sequential Probability Ratio Test

(SPRT) proposed by Wald [8], a test statistic S(t) is calcu-

lated at each time step t as

S(t) =

t
∑

i=1

log

(

p1(y(i))

p0(y(i))

)

,

and compared to the lower threshold γl = log β
1−α

and the

upper threshold γu = log 1−β
α

, where α and β denote pre-

specified bounds on the probabilities of false alarm and mis-

detection. As soon as one of the thresholds is crossed, the test

stops and a decision is made according to the following rule:

if S(t) ≥ γu : accept H1

if S(t) ≤ γl : accept H0.

Otherwise, we continue sampling.

3.2. The Consensus + Innovations SPRT (CISPRT)

The Consensus + Innovations Sequential Probability Ratio

Test (CISPRT) introduced in [2] extends the SPRT to dis-

tributed networks. In its original form, the CISPRT is formu-

lated for a specific shift-in-mean test only, which is why we

refer to our general formulation from [3] in this paper.

At each time instant t every node k computes its log-

likelihoood ratio (LLR) ηk(t) according to

ηk(t) = log

(

p1(yk(t))

p0(yk(t))

)

,

and updates its test statistic using neighbor information as

Sk(t) =
∑

l∈Nk

wklSl(t− 1) +
∑

l∈Nk

wklηl(t),

with appropriate combination weights wkl collected in matrix

W . For simplicity we choose equal combination weights, i.e.,

wkl =

{

1

|Nk|
if l ∈ Nk

0 otherwise.

In analogy to the SPRT, Sk(t) is compared to thresholds

γu
CI ≥

4

7

c σ2

η,0

µη,0

(

log
(α

2

)

+ log

(

1− e
− 1

2

µ2
η,0

cσ2
η,0

))

(1)

γl
CI ≤

4

7

c σ2

η,1

µη,1

(

log

(

β

2

)

+ log

(

1− e
− 1

2

µ2
η,1

cσ2
η,1

))

(2)

where µη,0, σ
2

η,0 and µη,1, σ
2

η,1 denote the mean and the vari-

ance of the LLR under H0 and H1, respectively. The constant

c depends only on the network. More precisely, c = r2 + 1

N

where N is the network size and r = ‖W − 1

N
11

⊤‖ is the

information flow. Here ‖ · ‖ denotes the Euclidean norm and

1 denotes the one-vector of length N . Each node makes a

decision according to the rule

if Sk(t) ≥ γu
CI : accept H1

if Sk(t) ≤ γl
CI : accept H0

else : continue sampling.

4. SEQUENTIAL MULTIPLE HYPOTHESIS

TESTING IN A DISTRIBUTED SENSOR NETWORK

4.1. The Matrix SPRT (MSPRT)

The Matrix SPRT (MSPRT) [1, Chapter 4] extends the

single-sensor SPRT to multiple hypotheses. This is done

by considering all possible hypothesis pairs Hm,Hn with

m,n = 1, . . . ,M and computing the pairwise test statistics

Smn(t) =

t
∑

i=1

log

(

pm(y(i))

pn(y(i))

)

.

Next, the test statistics are collected in a matrix S, all entries

of which are compared to a threshold matrix γu with entries

γu
mn = log

(

1− βmn

αmn

)

≈ log

(

1

αmn

)

,

where αmn and βmn denote bounds on the probabilities of

false alarm and misdetection of the pairwise hypothesis test.

We perform an acceptance test, i.e., the test is stopped and a

decision is made in favor of Hm once all entries in the mth

row of matrix S—excluding the (m,m)th entry —exceed the

corresponding thresholds. Formally, this can be written as

if ∃ m ∈ {1, . . . ,M} such that

Smn(t) ≥ γu
mn ∀ n ∈ {1, . . . ,M} \ {m} : accept Hm

else : continue sampling.
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(a) N = 15, dmax = 0.3.
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(b) N = 15, dmax = 0.6.
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(c) N = 30, dmax = 0.3.
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(d) N = 30, dmax = 0.6.

Fig. 1. Sample networks obtained by randomly generating simple, connected and undirected graphs.

Hence, the multiple hypothesis test corresponds to perform-

ing M(M − 1) one-sided pairwise tests in parallel. Here the

term one-sided is used to refer to tests with only an upper but

no lower threshold. Note that it is also possible to perform a

rejection test by inverting the LLRs and comparing to lower

thresholds γl
mn instead.

4.2. The Consensus + Innovations MSPRT (CIMSPRT)

In order to perform multiple hypothesis testing in a distributed

sensor network, we fuse the concepts of the CISPRT and the

MSPRT. In the proposed Consensus + Innovations Matrix Se-

quential Probability Ratio Test (CIMSPRT) each node k first

computes the LLRs for all hypothesis pairs Hm,Hn as

ηkmn(t) = log

(

pm(yk(t))

pn(yk(t))

)

. (3)

Next, the LLRs are distributed over the neighborhood and the

pairwise test statistics Sk
mn(t) are calculated for all hypothesis

pairs according to

Sk
mn(t) =

∑

l∈Nk

wklS
l
mn(t− 1) +

∑

l∈Nk

wklη
l
mn(t). (4)

Each node k performs an acceptance test according to the rule

if ∃ m ∈ {1, . . . ,M} such that

Sk
mn(t) ≥ γu

mn ∀ n ∈ {1, . . . ,M} \ {m} : accept Hm

else : continue sampling,

where γu
mn denotes the upper threshold for hypothesis pair

Hm,Hn, which is calculated according to (2).

4.3. Expected Stopping Time of the CIMSPRT

In this section we give an approximation to the expected

stopping time of the CIMSPRT. The stopping time T of

the CIMSPRT is defined as the first time instant t where a

hypothesis is accepted, i.e.,

T = inf
{

t | ∃m | Sk
mn(t) ≥ γu

mn ∀ n 6= m
}

.
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Fig. 2. Simulation results for the CIMSPRT.

Using Wald’s identity [8] and following his derivations, the

expected stopping time Tmn of a one-sided pairwise test be-

tween Hm and Hn under Hm can be approximated as

Em [Tmn] ≈
log (γu

mn)

D(pm|pn)
,

where D(pm|pn) denotes the Kullback–Leibler divergence.

Since the CIMSPRT decides for Hm once the corresponding

M − 1 one-sided pairwise tests have stopped, its expected

stopping time underHm can be approximated by the expected

stopping time of the slowest one-sided pairwise test, i.e.,

Em [Tm] ≈ max
n=1,...,M

n6=m

log (γu
mn)

D(pm|pn)
. (5)

5. ROBUSTIFYING THE CIMSPRT

In order to robustify the CIMSPRT against distributional un-

certainties such as outliers, we resort to the concept of LFDs

as proposed in [4], which we also used in our earlier work [3]

to robustify the binary CISPRT. Assuming the measurements

are ε-contaminated [9], i.e.,

pm = (1− ε)p0m + εhm

where 0 ≤ ε < 0.5 is the contamination factor, and p0m and

hm denote the density of the nominal and the contaminating
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distribution under Hm, respectively, we can find the fixed-

sample-size LFDs for each hypothesis pair Hm,Hn as

qm = max
{

cmqn , (1− ε)p0m
}

,

qn = max
{

cnqm , (1− ε)p0n
}

,
(6)

for some cm, cn > 0. An efficient way for solving (6) can be

found in [4, Table 1]. Replacing the nominal densities in (3)

with the LFDs yields

ηk,clipped
mn (t) = log

(

qm(yk(t))

qn(yk(t))

)

.

This expression corresponds to Huber’s clipped LLR [6, 7],

which clips the LLR at certain levels to bound the influence of

outliers. Hence, we can replace the pairwise LLR in (4) by its

clipped counterpart and perform the matrix test at each node

as in Section 4.2. We dub this algorithm LFD-CIMSPRT.

6. SIMULATIONS

In this section, we analyze the performance of the proposed

algorithms under different network sizes, N ∈ {15, 30},

and connectivity, dmax ∈ {0.3, 0.6}. We consider the four

different networks depicted in Fig. 1 and perform a shift-

in-variance test to decide which of the four zero-mean

signals with variances σ2
m ∈ {1, 2, 4, 16} is active. Fur-

thermore, we fix the required probability of false alarm to

αmn = α = 0.01, and, in case of the LFD-CIMSPRT, con-

sider one type of contamination under all hypotheses, namely,

hm = h = N (0, 81). The contamination ratio ε is swept

over the interval [0, 0.3]. For each hypothesis 1 000 Monte

Carlo runs are performed. We consider the ratio of correct de-

tection as well the average stopping time of the algorithm as

performance metrics. In case of the CIMSPRT we compare

the average stopping time to the approximation (5).

The simulation results for the CIMSPRT are shown in

Fig. 2. Our algorithm clearly meets the required false-alarm

probability of α = 0.01. In all cases, the average stopping

time deviates from the analytic approximation by at most two

time instants, which means that the performance of the algo-

rithm can be accurately predicted. Furthermore, the average

stopping time is equal under H1 and H2, and drops as the

signal variance increases under H3 and H4. This is due to

the fact that, in a variance test, it is easier to match large val-

ues to their corresponding hypotheses. Finally, we see that a

higher network connectivity can drastically reduce the aver-

age stopping time, while increasing the network size only has

a marginal effect. This indicates a favorable scaling probabil-

ity of the proposed algorithm.

The simulation results for the LFD-CIMSPRT are de-

picted in Fig. 3. The LFD-CIMSPRT delivers accurate de-

tection results up to a contamination of 10 % irrespective of

network size, connectivity, or underlying hypothesis. In the

case where H4 is true, i.e., the signal with the largest variance
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Fig. 3. Ratio of correct detection (left column) and average

stopping time (right column) for the LFD-CIMSPRT under

H1, . . . ,H4 (from top to bottom).

is active, even 20 % outliers can be tolerated. Again, the im-

pact of connectivity on the stopping time is visible, while the

network size only has a marginal effect.

7. CONCLUSION

We proposed the CIMSPRT and its robust extension—the

LFD-CIMSPRT—to perform sequential multiple hypothesis

tests in distributed sensor networks. The algorithms are based

on a fusion of the MSPRT and a generalized version of the

CISPRT. Robustness is induced using LFDs. Our simulations

show that in all considered scenarios the CIMSPRT delivers

accurate detection results—the LFD-CIMSPRT even under

10-20 % contamination. Furthermore, we showed that the av-

erage stopping time can be predicted and is mainly controlled

by the network connectivity so that the performance of our

algorithms scales well with the network size.
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