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ABSTRACT

Identification of piecewise continuous Hammerstein systems,
which consist of the cascade of memoryless piecewise con-
tinuous systems followed by linear systems, is an important
problem in engineering. In the identification process, major
existing approaches approximate exact minimization of the
non-convex cost function for the piecewise continuous sys-
tem, which degrades the identification accuracy in some oc-
casions. In this paper, we propose an alternating minimization
approach for identification of the piecewise continuous Ham-
merstein system by alleviating the difficulty in minimization
of the cost function for the piecewise continuous system. We
first decompose this minimization into quadratic subproblems
by sorting the magnitudes of input signals. Then, based on
this decomposition, the proposed method exactly minimizes
the cost function by finite comparison of the solutions of the
subproblems. Numerical examples show the effectiveness of
the proposed method.

Index Terms— System identification, Hammerstein sys-
tem, discontinuous nonlinearity.

1. INTRODUCTION

Identification of Hammerstein systems which exhibit dis-
continuous nonlinearity is an important problem in, e.g.,
automatic control [1–3] and acoustic echo cancellation [4, 5].
More precisely, we consider identification of the Hammer-
stein system which consists of the cascade of a memoryless
nonlinear system followed by a finite impulse response (FIR)
system, and the nonlinear part is (possibly) discontinuous
w.r.t. the input signal. In many situations, such nonlinearity
can be well approximated by a piecewise continuous Ham-
merstein system, i.e., the nonlinear part is approximated by
a piecewise continuous system which possesses unknown
discontinuous points [4–11].

Meanwhile, for the globally continuous Hammerstein sys-
tem, a common identification method is to alternatingly mini-
mize the cost function w.r.t. linear and nonlinear parts [12–
14]. However, for the piecewise continuous Hammerstein
system, since the cost function for the nonlinear part is non-
convex due to the discontinuous points, major existing ap-

proaches approximate the exact minimization by replacing
unknown discontinuous points to tentative estimates [6–11].
In some occasions, this approximation causes serious degra-
dation of the identification accuracy. Another approaches [4,
5] use gradient descent to suppress the cost function (note:
the use of gradient descent can be found for similar models,
e.g., [15, 16]). However, gradient descent would not be suit-
able for this scenario because the cost function has plateaus
w.r.t. the discontinuous points.

In this paper, by alleviating the difficulty in the minimiza-
tion of the cost function for the nonlinear part, we propose
an alternating minimization approach for identification of the
piecewise continuous Hammerstein system.

To minimize the cost function for the nonlinear part, we
exploit the fact that the cost function is quadratic over re-
gions which can be specified by sorting the input signals of
the system. Based on this fact, we reduce minimization of
the cost function for the nonlinear part to quadratic subprob-
lems. More precisely, the proposed method first clarifies re-
gions where the cost function is quadratic by sorting input
signals, and obtain the quadratic form in each region. Then,
since the minimizer of the quadratic function in each region
can be computed in the closed form, the global minimizer can
be obtained by finite comparison of the solutions.

The proposed method is particularly useful for the situ-
ations where the number of discontinuity is few enough be-
cause the number of subproblems is roughly (N+M)L where
L is the number of discontinuous points,N is the length of the
FIR system, andM is the number of observations used for the
identification. Such examples include, e.g., preload and dead-
zone nonlinearity [6–8] where the number of discontinuity is
at-most two.

To show the effectiveness of the proposed method, we
present numerical examples on identification of the Hammer-
stein system with preload and dead-zone nonlinearity. We
compare the proposed method with the algorithm presented
in [6]. The results show the superior performance of the pro-
posed method.

This work is an extension of our previous paper [17]
where the clipping nonlinearity is considered.

Notations: Let N∗ and R denote the sets of all positive
integers and all real numbers, respectively. For matrices or

4389978-1-5386-4658-8/18/$31.00 ©2018 IEEE ICASSP 2018



models discontinuous nonlinearity

FIR
um

 (·|C?, p?) h?
ym

vm

dm
Input xm

Noise

DataOutput

Fig. 1. An illustration of a Hammerstein system with discontinuous nonlinearity where the nonlinear part is approximated by
the piecewise continuous system ψ(·|C?,p?).

vectors, we denote the transpose by (·)>. For x ∈ RN and
X ∈ RN×M , [x]n and [X]n,m respectively denote the n-th
component of x and the (n,m)-entry ofX .

2. PRELIMINARIES

2.1. Problem Formulation

As shown in Fig. 1, we consider identification of the Ham-
merstein system which consists of a memoryless piecewise
continuous system followed by an FIR system. Let xm ∈ R
and ym ∈ R respectively denote the input and output signal
of the system at time instant m ∈ N∗. Then, available obser-
vation (xm, dm) for system identification is defined by

um := ψ(xm|C?,p?),

ym := [um, . . . , um−N+1]h?,

dm := ym + vm,

where h? ∈ RN is the impulse response vector, and vm ∈ R
is the observation noise. The piecewise continuous system
ψ(·|C?,p?) is defined by

ψ(x|C?,p?)

:=



∑K
k=1[C?]k,1ϕk(x), (x ∈ (−∞, [p?]1)),

...∑K
k=1[C?]k,`ϕk(x), (x ∈ [[p?]`−1, [p

?]`)),
...∑K

k=1[C?]k,L+1ϕk(x), (x ∈ [[p?]L,∞)),

(1)

where ϕk : R → R (k = 1, . . . ,K) are known continuous
functions, C? ∈ RK×(L+1) consists of unknown coefficients
in each segment, p? ∈ RL consists of unknown (possibly)
discontinuous points [p?]1 < · · · < [p?]L. A popular model
is the piecewise affine function, i.e., ϕk(x) = xk−1 (k =
1, 2) [4, 6–11].

For simplicity, this paper considers batch estimation
of (h?,C?,p?) from known observations dM , . . . , d1 and

xM , . . . , x1−N+1, and define the cost function by

Θ(h,C,p)

:=

M∑
m=1

(dm − [ψ(xm|C,p), . . . , ψ(xm−N+1|C,p)]h)2.

(2)

3. PROPOSED METHOD

We propose to estimate (h?,C?,p?) by the estimation se-
quence (ĥj , Ĉj , p̂j)j∈N∗ generated through alternating mini-
mization of the cost function:

ĥj ∈ arg min
h∈RN

Θ(h, Ĉj−1, p̂j−1), (3)

(Ĉj , p̂j) ∈ arg min
(C,p)∈V

Θ(ĥj ,C,p), (4)

from initial guess (Ĉ0, p̂0) ∈ V where V := {(C,p) ∈
RK×(L+1)×RL|[p]1 < · · · < [p]L} is a constraint set to keep
the order of the entries of p. The first problem (3) is reduced
to a system of linear equations because Θ(h, Ĉj−1, p̂j−1) is
quadratic w.r.t. h. In the next section, we present an algo-
rithm to exactly minimize non-convex Θ(ĥj ,C,p) in (4) by
decomposing this minimization into quadratic subproblems.

3.1. Identification of Piecewise Continuous Systems

We begin by rewriting Θ(ĥj ,C,p) in (4) from the expression
in (2) to

Θ(ĥj ,C,p) = ‖d− Ĥjψ(x|C,p)‖2, (5)

where d := [dM , . . . , d1] ∈ RM , Ĥj ∈ RM×N̄ repre-
sents the convolution of ĥj , x := [xM , . . . , x1−N+1] ∈
RN̄ , ψ(x|C,p) := [ψ(xM |C,p), . . . , ψ(x1−N+1|C,p)]>

∈ RN̄ , N̄ = N +M − 1, and ‖ · ‖ denotes the Euclidian (`2)
norm. More precisely, Ĥj is defined by

Ĥj :=


[ĥj ]1 · · · [ĥj ]N 0 · · · 0

0 [ĥj ]1 · · · [ĥj ]N · · · 0
...

...
...

...
. . .

...
0 · · · [ĥj ]1 · · · · · · [ĥj ]N

 .
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In the next proposition, we first clarify the regions
where ψ(x|C,p) is affine w.r.t. (C,p), which implies that
Θ(ĥj ,C,p) is quadratic w.r.t. (C,p) in the regions. Sub-
sequently, we reduce the minimization of Θ(ĥj ,C,p) into
quadratic subproblems.

Proposition 1 (Decomposition into quadratic subproblems).
Sort the entries of x into x̃1, . . . , x̃N̄ in ascending order, i.e.,

x̃i :=[x]τ(i) (i = 1, . . . , N̄)

where the bijection τ : {1, . . . , N̄} → {1, . . . , N̄} satisfies1

[x]τ(1) < · · · < [x]τ(N̄).

Then, ψ(x|C,p) is affine for [p]` ∈ (x̃n`
, x̃n`+1] (` =

1, . . . , L) (1 ≤ n1 < · · · < nL ≤ N̄ − 1) as2

ψ(x|C,p) =

L+1∑
`=1

n∑̀
i`=n`−1+1

K∑
k=1

[C]k,`ϕk(x̃i`)eτ(i`), (6)

where {ej}N̄j=1 is the standard orthonormal basis of RN̄ , i.e.,
j-th entry of ej is one and the others are zeros. By substituting
(6) into (5), for [p]` ∈ (x̃n`

, x̃n`+1] (` = 1, . . . , L), we have

Θ(ĥj ,C,p) =

∥∥∥∥∥d−
L+1∑
`=1

K∑
k=1

[C]k,`a
(k)
n`−1,n`

∥∥∥∥∥
2

,

where

a(k)
n`−1,n`

:=

n∑̀
i=n`−1+1

ϕk(x̃i)[Ĥj ]:,τ(i), (7)

and [Ĥj ]:,τ(i) ∈ RM denotes the τ(i)-th column vector of
Ĥj . Based on this expression, minimization of Θ(ĥj ,C,p)
can be decomposed as3

min
(C,p)∈V

Θ(ĥj ,C,p)

= min
(n1,...,nL)∈Q

min
C∈RK×(L+1)

∥∥∥∥∥d−
L+1∑
`=1

K∑
k=1

[C]k,`a
(k)
n`−1,n`

∥∥∥∥∥
2

,

where Q := {(n1, . . . , nL) ∈ {1, . . . , N̄ − 1}L |n1 < · · · <
nL}.

Based on this decomposition, we can compute the global
minimizer by comparing the solutions of the quadratic sub-
problems. Detailed steps are shown in the following algo-
rithm.

1For simplicity, we here assume that entries of x are different. This as-
sumption can be relaxed easily.

2With a slight abuse of the notation, we let n0 := 0 and nL+1 = N̄ .
3We restrict [p]` ∈ (x̃1, x̃N̄ ] (` = 1, . . . , L) since a minimizer of

Θ(ĥj ,C,p) can be found in this region.

Algorithm 1 (Exact minimization via decomposition into
quadratic subproblems).

1. Solve quadratic subproblems

C∗n1,...,nL
∈

arg min
C∈RK×(L+1)

∥∥∥∥∥d−
L+1∑
`=1

K∑
k=1

[C]k,`a
(k)
n`−1,n`

∥∥∥∥∥
2

for every (n1, . . . , nL) ∈ Q.

2. Compute (Ĉj , p̂j) ∈ arg min(C,p)∈V Θ(ĥj ,C,p) by
comparing the solutions of the quadratic problems:

Ĉj = C∗n∗
1 ,...,n

∗
L
,

[p̂j ]` ∈ (x̃n∗
`
, x̃n∗

` +1] (` = 1, . . . , L),

where

(n∗1, . . . , n
∗
L) ∈

arg min
(n1,...,nL)∈Q

∥∥∥∥∥d−
L+1∑
`=1

K∑
k=1

[C∗n1,...,nL
]k,`a

(k)
n`−1,n`

∥∥∥∥∥
2

.

Remark 1 (Extension for symmetric nonlinear models). In
some typical situations, the nonlinear parts of Hammerstein
systems are odd-symmetric w.r.t. the input signal, e.g., [4, 6,
8]. This type of nonlinearities can be modeled through (1),
but more efficiently modeled as

ψsym(x|A?, q?)

:=



∑K
k=1[A?]k,1ϕk(sgn(x)), (|x| ∈ [0, [q?]1)),

...∑K
k=1[A?]k,`ϕk(sgn(x)), (|x| ∈ [[q?]`−1, [q

?]`)),
...∑K

k=1[A?]k,L+1ϕk(sgn(x)), (|x| ∈ [[q?]L,∞)),

where sgn(x) denotes the sign of x. For ψsym(·|A?, q?), by
sorting the absolute values of the entries of x, we can develop
a more efficient algorithm than Algorithm 1.

Remark 2 (Efficient implementation through recursive com-
putation). In Algorithm 1, calculation of a(k)

n,m for every
(n,m) ∈ {(m′, n′) ∈ {1, . . . , N̄}2 |m′ < n′} by the def-
inition (7) requires roughly O(MN̄3) multiplication. By
exploiting the relation

a(k)
n,m = a

(k)

0,N̄
− a(k)

0,n−1 − a
(k)

m,N̄
,

a
(k)
n,m can be computed through simple addition/subtraction

from
(
a

(k)
0,n

)N̄
n=0

and
(
a

(k)

m,N̄

)N̄
m=0

. Moreover, by computing
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Table 1. Normalized mean square error of (h?,C?,p?) is shown in dB for different impulse response vectors h?. For the
existing method [6], we show the the results for different upper bounds pupb = 3 and pupb = p? = 2.

Situation Algorithm ‖h? − ĥ‖2/‖h?‖2 ‖C? − Ĉ‖2fro/‖C?‖2fro ‖p? − p̂‖22/‖p?‖22

(N,M) = (4, 200)
Proposed (Algorithm 1) −37.9 −18.7 −35.1

Existing [6] with pupb = 3 −25.5 −2.4 omitted
Existing [6] with pupb = p? −37.9 −18.7 omitted

(N,M) = (256, 1000)
Proposed (Algorithm 1) −24.7 −23.6 −51.5

Existing [6] with pupb = 3 −11.4 −4.5 omitted
Existing [6] with pupb = p? −24.7 −23.6 omitted

(
a

(k)
0,n

)N̄
n=0

and
(
a

(k)

m,N̄

)N̄
m=0

through recursive calculation

a
(k)
0,n = a

(k)
0,n−1 + ϕk(x̃n)[Ĥj ]:,τ(n),

a
(k)

m,N̄
= a

(k)

m+1,N̄
+ ϕk(x̃m+1)[Ĥj ]:,τ(m+1),

we can reduce the order of multiplication to O(MN̄).

Remark 3 (Overall computational costs of Algorithm 1). The
number of subproblems in step 1 of Algorithm 1 is roughly
N̄L. Thus, for M > K(L + 1), computational cost for solv-
ing all subproblems is roughlyO(N̄L(M2 +(KL)3)), which
suggests that Algorithm 1 is practical for small enough L (see
Remark 2 for computational costs to obtain a(k)

n`−1,n` ).

4. NUMERICAL EXAMPLES

To show the effectiveness of the proposed approach, we con-
duct numerical experiments on identification of the Hammer-
stein system with symmetric preload and dead-zone nonlin-
earity defined as

pdz(x|a?, b?, p?) :=

{
0, if |x| ≤ p?,
a?x+ b?sgn(x), otherwise,

(8)

which can be interpreted as ψ(x|C?,p?) in (1) with ϕk(x) =
xk−1 (k = 1, 2), [p?]1 = −p?, [p?]2 = p?, [C?]2,1 =
[C?]2,3 = a?, [C?]1,1 = −b?, [C?]1,3 = b?, and [C?]1,2 =
[C?]2,2 = 0.

According to [6], we set the system to be identified as
a? = 6, b? = 2, p? = 2, and h? = [0.7947, 0.2649,−0.5298,
−0.1325]> ∈ R4. We also show a numerical example for
the impulse response vector of larger size by generating h? ∈
R256 from Gauss distribution N (0, 1). Note that both exam-
ples are normalized as ‖h?‖ = 1 and [h?]1 ≥ 0. We generate
the input signal xm by uniform distribution [−5, 5], and set
vm as white Gaussian noise of 20dB SNR. We use M = 200
observations for h? ∈ R4, and M = 1000 for h? ∈ R256.

We compare the proposed approach (3) and (4) with the
algorithm presented in [6] which approximately solves (4) by
using an upper bound of p?. For both proposed and existing
methods, ĥ1 is computed by (3) with identity initialization,

i.e., (C0,p0) is defined so that ψ(x|C0,p0) = x. To resolve
the scalar ambiguity, we perform the normalization step after
(3) so that ‖ĥj‖ = 1 and [ĥj ]1 ≥ 0. Note that we utilize an
efficient implementation by exploiting symmetry in C? and
p? for the preload and dead-zone model (8) (note: this effi-
cient implementation is essentially based on Remark 1).

The results are shown in Table 1 where we compare
the algorithms in terms of normalized mean square error
of (h?,C?,p?) averaged over 100 trials. Note that, as
the estimate, we adopt 50 iterations of (3) and (4), i.e.,
(ĥ, Ĉ, p̂) = (ĥ50, Ĉ50, p̂50). The existing method in [6]
requires an upper bound pupb ≥ p?, so we show the results
for pupb = 3 and pupb = p? = 2. Note that we omit the
result on p? for the existing method because this method
requires another identification process for the estimation of
p? by using the input-output correlation. It can be seen that
the proposed method outperforms the existing method with
pupb = 3, and achieve the performance same to that with the
ideal upper bound pupb = p?. For impulse response vector
of larger size N = 256, similar result can be seen with the
moderate number of observations M = 1000.

5. CONCLUSION

For the identification of a piecewise continuous Hammerstein
system, we presented an alternating minimization approach
(3) and (4) by alleviating the difficulty in the minimization
of Θ(ĥj ,C,p) in (4). We first show that minimization of
Θ(ĥj ,C,p) can be reduced to minimization of quadratic sub-
problems by sorting the magnitudes of input signals. Then,
the proposed method computes the global minimizer by finite
comparison of the solution of the subproblems. Numerical
examples show the effectiveness of the proposed approach.
Future work includes development of a more efficient algo-
rithm by exploiting the sparsity in u := ψ(x|C,p) based on
the techniques in [18].
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