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ABSTRACT

We study support patterns for covariance matrices that appear in the
problem of stochastic time-varying channel identification. The prob-
lem reduces to solving a linear system that is associated with a matrix
in the form of a Kronecker product of a Gabor system matrix with
itself, and therefore solvability of the linear system depends on the
choice of generating window for the Gabor system and the support
pattern of the object vector. In this paper, we investigate support pat-
terns that allows the linear system to be solvable with some window.
We present several classes of permissible patterns and also provide
how the corresponding windows need to be chosen.

Index Terms— Channel identification, covariance estimation,
Kronecker product

1. INTRODUCTION

Let x = (x1, x2, . . . , xN )T ∈ CN be a vector of N independent
zero-mean random variables with covariance X = E [xx∗], and let
y = Ax be the vector ofm� N linear measurements of x through
a measurement matrix A ∈ Cm×N . As the vector x is stochastic,
our aim is not to recover x from y but to recover X by observing the
covariance of y given by Y = E[yy∗] = AE[xx∗]A∗ = AXA∗.
Through a vectorization, Y can be expressed as

vec(Y ) = (A⊗A) vec(X), (1)

where A is the conjugate matrix of A and ⊗ denotes the Kronecker
product (see Sec. 3). Certainly, this linear system is underdetermined
and therefore requires a priori knowledge in order to determine X
from Y , for example, sparsity or low rank assumptions on X . If X
is sparse and is even known to be supported in a certain set Γ, the
question remains whether the submatrix (A ⊗A)|Γ (with columns
restricted to the set Γ) is injective so that (1) can be actually solved.
Clearly, characterization of support patterns Γ for which (A⊗A)|Γ
is injective will depend both on the matrix A and the Kronecker
tensor structure.

Determining second order statistics is an important problem in
many different applications like array signal processing [1], spectral
analysis of stationary stochastic processes [2], prediction and estima-
tion of communication channels [3], to mention only a few. In recent
years, new ideas from compressive sampling has brought progress in
this field, using sparse structures (patterns) of the covariance matri-
ces [4, 5].

This work was supported by the German Research Foundation (DFG)
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(CoSIP) under Grants PO 1347/3-1 and PF 450/9-1.

In this paper we focus on a specific application, namely the iden-
tification of stochastic time-varying channels [3, 6] in which case A
becomes a Gabor system matrix (see Sec. 2). Several support pat-
terns of X for which the problem (1) is solvable/nonsolvable are
found and discussed in [3], however, those patterns depend only on
the structure of Kronecker tensor product and do not make use of the
Gabor structure of A (with the exception of diagonal pattern). Fur-
thermore, giving a full characterization of such patterns seems too
challenging and may even be impossible. It should be noted that
X , by definition, is a positive semi-definite matrix and therefore
its support has a certain symmetry (cf. (3)). This paper considers
patterns that do not possess this symmetry, however, characterizing
non-symmetric patterns that allow injectivity of (A⊗A)|Γ is an in-
teresting task from a theoretical viewpoint and may as well lead to
substantial insights on the symmetric patterns.

2. MOTIVATION: CHANNEL IDENTIFICATION

A classical and frequently used model of a time-varying communi-
cation channel H with input signal x and output y is given by

y(t) = (Hx)(t) =
∫∫

η(τ, ν)
(
MνTτx

)
(t) dτ dν ,

wherein Mν and Tτ are the continuous modulation and translation
operators respectively. In applications like radar or communications,
often the problem is to identify the spreading function η of the chan-
nel H from the channel response y of an appropriate test signal x.
Often, the spreading function η can be considered as a zero-mean
(two-dimensional) stochastic process. Then the goal is to estimate
the covarianceRη(τ, τ ′, ν, ν′) = E

[
η(τ, ν) η(τ ′, ν′)

]
of the spread-

ing function from the covariance E[y(t) y(t′)] of the received signal.
Using a sounding signal of the form

x(t) =
∑
n∈Z cn δ(t− kT ) (2)

with the Dirac delta function δ and with an L-periodic sequence
{cn}n∈Z, the described problem is reduced to a finite-dimensional
problem of the form (1) where A = G(c) is the full Gabor system
matrix generated by the window c = (c0, . . . , cL)T, X corresponds
to the covariance Rη of the channel, and Y corresponds to the co-
variance of the received signal y (see [3] for further details).

Often, the support pattern Γ for the covarianceRη of the channel
(i.e. the support of X in (1)) is known. Then, in order to identify the
channel, we have to choose c such that the matrix G(c) ⊗G(c)|Γ
is invertible. If this is possible, we say that Γ is permissible; other-
wise Γ is said to be defective. In Section 4, we will identify several
classes of permissible patterns and also present how the correspond-
ing windows c have to be chosen.
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3. NOTATIONS AND TERMINOLOGY

The Kronecker (tensor) product of two matrices A = [ak,`]
K
k=1

L
`=1

and B = [bm,n]Mm=1
N
n=1 is the KM × LN matrix defined as the

block matrix

A⊗B =

a1,1B . . . a1,LB
...

. . .
...

aK,1B . . . aK,LB

 .
For a matrix X ∈ CΛ×Λ with rows and columns indexed by a finite
set Λ, its support set is defined as

suppX = {(λ, λ′) ∈ Λ× Λ : X(λ, λ′) 6= 0},

which will be viewed as a (support) pattern in Λ × Λ. The diag-
onal pattern is defined as diag(Λ) = {(λ, λ) : λ ∈ Λ}. Note
that if X is positive semi-definite, then (λ, λ′) ∈ suppX implies
(λ, λ), (λ′, λ), (λ′, λ′) ∈ suppX . For a support set Γ ⊆ Λ × Λ,
we say that Γ is a positive semi-definite (psd) pattern if

(λ, λ′) ∈ Γ ⇒ (λ, λ), (λ′, λ), (λ′, λ′) ∈ Γ. (3)

Given an ordered index set Λ = {λ0, . . . , λN−1} of size N , we
define the vectorization of a matrix X ∈ CΛ×Λ as vec(X) =
{X(λ, λ′)}(λ,λ′)∈Λ2 , where Λ2 is the ordered set given by

Λ2 = {(λ0, λ0), (λ1, λ0), . . . , (λN−1, λ0), . . . , (λN−1, λN−1)}.

Equivalently, vec(X) is the N2-dimensional vector obtained by
stacking up all the columns of X into a single column.

Gabor system Let L ≥ 2 be an integer. The translation and mod-
ulation operators on CL are defined as Tx = (xL−1, x0, . . . , xL−2)
and Mx = (ω0x0, ω

1x1, . . . , ω
L−1xL−1) for x = (x0, . . . , xL−1)

in CL respectively, where ω = e2πi/L. Note that TL = ML = IL.
The time-frequency shift operators on CL are defined as π(k, `) =
M `T k for k, ` ∈ ZL.

For a window vector c = (c0, . . . , cL−1) ∈ CL, the full Gabor
system matrix, denoted by G(c), is the L× L2 matrix consisting of
the column vectors π(k, `)c, k, ` = 0, . . . , L− 1, that is,

G(c) = [ D0 WL D1 WL · · · DL−1 WL ] ,

where Dk = diag(T kc) = diag(cL−k, . . . , cL−1, c0, . . . , cL−k−1),
and WL = [ωk`]L−1

k,`=0 is the L × L discrete Fourier matrix. It is
known that there exist vectors c ∈ CL for which every L column
vectors of G(c) are linearly independent, in fact, such vectors form
a dense, open subset of CL with full measure [7, 8].

4. PERMISSIBLE / DEFECTIVE PATTERNS

As we are interested in patterns for which (A ⊗ A)|Γ is injective,
in the particular case where A is a Gabor matrix, we introduce the
following definition as in [3].
Definition 1 ( [3]): A support pattern Γ ⊂ (ZL×ZL)×(ZL×ZL)

is said to be permissible if there exists c ∈ CL such that G(c) ⊗
G(c)|Γ is injective; otherwise, we say that Γ is defective.

Clearly, a permissible pattern is of cardinality at most L2 and
any pattern containing a defective pattern is again defective.

(k, `)

(0, 0) (0, 1) (0, 2) (1, 0) (1, 1) (1, 2) (2, 0) (2, 1) (2, 2)

(m,n)

(0, 0)

(0, 1)

(0, 2)

(1, 0)

(1, 1)

(1, 2)

(2, 0)

(2, 1)

(2, 2)

(k, `)

(0, 0) (0, 1) (0, 2) (1, 0) (1, 1) (1, 2) (2, 0) (2, 1) (2, 2)

(m,n)

(0, 0)

(0, 1)

(0, 2)

(1, 0)

(1, 1)

(1, 2)

(2, 0)

(2, 1)

(2, 2)

Fig. 1. Permissible patterns forL = 3. A tensor square (or rank-one)
pattern (left) and the diagonal pattern (right).

4.1. Patterns that can be described by linear dependence of
columns of G(c)

There exist patterns whose permissibility is completely charac-
terized by linear independence of the corresponding columns of
G(c) ∈ CL×L

2

. We state the result for a general matrix of size
m×N with m ≤ N .
Theorem 1: Let A ∈ Cm×N withm ≤ N , and let Λ ⊆ {0, 1, . . . , N−
1} with |Λ| ≥ 2. The following are equivalent.

(a) A|Λ (∈ Cm×|Λ|) is injective.

(b) A⊗A|Λ×Λ (∈ Cm
2×|Λ|2) is injective.

(c) There exist nonempty disjoint subsets Λ1,Λ2 ⊂ Λ with Λ1 ∪
Λ2 = Λ such that A⊗A|(Λ1×Λ1)∪(Λ2×Λ2) is injective.

(d) There exist nonempty disjoint subsets Λ1,Λ2 ⊂ Λ with Λ1 ∪
Λ2 = Λ such that A⊗A|(Λ1×Λ2)∪(Λ2×Λ1)∪ diag(Λ) is injec-
tive.

(e) There exists λ ∈ Λ for which A⊗A|({λ}×Λ)∪(Λ×{λ})∪ diag(Λ)

is injective.

Moreover in this case, |Λ| ≤ rankA (≤ m) and A⊗A|Γ is injec-
tive for every (psd or non-psd) subpattern Γ ⊂ Λ× Λ.

Recall that there exists c ∈ CL for which every L column vec-
tors of A = G(c) ∈ CL×L

2

are linearly independent (m = L,
N = L2). By choosing such a vector c, the condition (a) is fulfilled
whenever the set Λ is of cardinality ≤ L. Hence, all the patterns ap-
pearing in (b)-(e), namely the patterns Λ×Λ, (Λ1×Λ1)∪(Λ2×Λ2),
(Λ1×Λ2)∪(Λ2×Λ1)∪ diag(Λ), ({λ}×Λ)∪(Λ×{λ})∪ diag(Λ),
where Λ = Λ1∪̇Λ2 and λ ∈ Λ, are permissible whenever |Λ| ≤ L.
Note that these patterns are all psd.

As every set of L + 1 vectors in CL are linearly dependent,
Theorem 1 implies that all patterns appearing in (b)-(e) are defective
whenever |Λ| ≥ L+ 1.

Related Work Permissible patterns: The permissibility of the pat-
tern Λ × Λ with |Λ| ≤ L (tensor square or rank-one) and the di-
agonal pattern of Proposition 2 below, was first proved in [3]. Fig.1
shows two permissible patterns.
Defective patterns: The pattern ({λ} ×Λ) ∪ (Λ× {λ}) ∪ diag(Λ)
with λ ∈ Λ and |Λ| ≥ L + 1 (arrowhead) is known to be defective
(e.g., [4]). The defectiveness of the patterns (Λ1×Λ1)∪ (Λ2×Λ2)
(two squares or rank-two) and (Λ1×Λ2)∪ (Λ2×Λ1)∪ diag(Λ1 ∪
Λ2) (butterfly) for disjoint sets Λ1,Λ2 with |Λ1| + |Λ2| ≥ L + 1,
was proved in [3]. Fig. 2 illustrates the first two defective patterns.
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(k, `)

(0, 0) (0, 1) (0, 2) (1, 0) (1, 1) (1, 2) (2, 0) (2, 1) (2, 2)

(m,n)

(0, 0)

(0, 1)

(0, 2)

(1, 0)

(1, 1)

(1, 2)

(2, 0)

(2, 1)

(2, 2)

(k, `)

(0, 0) (0, 1) (0, 2) (1, 0) (1, 1) (1, 2) (2, 0) (2, 1) (2, 2)

(m,n)

(0, 0)

(0, 1)

(0, 2)

(1, 0)

(1, 1)

(1, 2)

(2, 0)

(2, 1)

(2, 2)

Fig. 2. Defective patterns for L = 3. An arrowhead pattern (left)
and a pattern containing a rank-two defective pattern (right).

(k, `)

(0, 0) (0, 1) (0, 2) (1, 0) (1, 1) (1, 2) (2, 0) (2, 1) (2, 2)

(m,n)

(0, 0)

(0, 1)

(0, 2)

(1, 0)

(1, 1)

(1, 2)

(2, 0)

(2, 1)

(2, 2)

(k, `)

(0, 0) (0, 1) (0, 2) (1, 0) (1, 1) (1, 2) (2, 0) (2, 1) (2, 2)

(m,n)

(0, 0)

(0, 1)

(0, 2)

(1, 0)

(1, 1)

(1, 2)

(2, 0)

(2, 1)

(2, 2)

Fig. 3. Patterns of type (i) (left) and (ii) (right) for L = 3.

4.2. Generalized Diagonal Patterns

Proposition 2 ( [3, 6]): Let Γdiag = {(λ, λ̃) ∈ (ZL × ZL) ×
(ZL × ZL) : λ = λ̃} be the diagonal set. The matrix G(c) ⊗
G(c)|Γdiag = [π(λ)c ⊗ π(λ)c]λ∈ZL×ZL is invertible if c ∈ CL
satisfies 〈c, π(λ)c〉 6= 0 for all λ ∈ ZL × ZL. The set of all such
vectors c is a dense, open subset of CL with full measure.

As a generalization of the diagonal pattern Γdiag = {(k, `, k, `) :
k, ` ∈ ZL}, we consider patterns of the form (cf. Fig. 3)

(i) Γ = ∪L−1
k=0 {(k, `, k, nk,`) : ` ∈ ZL},

(ii) Γ = ∪L−1
k=0 {(k, `k,n, k, n) : n ∈ ZL},

where nk,` ∈ ZL (resp. `k,n ∈ ZL) is an arbitrary sequence in k, `
(resp. k, n). It should be noted that a pattern of types (i) or (ii) is a
psd pattern only when it is a diagonal pattern, i.e., nk,` = ` for type
(i) and `k,n = n for type (ii).

Theorem 3: Let L ≥ 2 be any integer and let Γ ⊂ (ZL × ZL) ×
(ZL × ZL) be any pattern of type (i) or (ii). The matrix G(c) ⊗
G(c)|Γ = [π(λ)c ⊗ π(λ̃)c](λ,λ̃)∈Γ ∈ CL

2×L2

is invertible for all
c in a dense open subset of CL with full measure.

This theorem shows that if the channel is known to have a sup-
port pattern of type (i) or (ii), then the L-periodic sequence in the
sounding signal (2) can be chosen randomly, because for almost all
vectors c ∈ CL the matrix G(c)⊗G(c)|Γ is invertible.

(m,n)

(0, 0)

(0, 1)

(0, 2)

(1, 0)

(1, 1)

(1, 2)

(2, 0)

(2, 1)

(2, 2)

(k, `)

(0, 0) (0, 1) (0, 2) (1, 0) (1, 1) (1, 2) (2, 0) (2, 1) (2, 2)

(m,n)

(0, 0)

(0, 1)

(0, 2)

(1, 0)

(1, 1)

(1, 2)

(2, 0)

(2, 1)

(2, 2)

(k, `)

(0, 0) (0, 1) (0, 2) (1, 0) (1, 1) (1, 2) (2, 0) (2, 1) (2, 2)

Fig. 4. The case with L = 3 and p = 2. All cosets [Vp + (0, q)] ×
[Vp + (0, q′)], q, q′ = 0, . . . , L − 1 are shown in different colors
(left). A pattern of type (iii) is formed by choosing one element
from each coset (right).

4.3. Scattered Patterns

If L ≥ 2 is a prime, there exist exactly L+ 1 additive subgroups of
ZL × ZL with cardinality L, namely [9, 10],

Vp := {(j, jp) : j = 0, . . . , L− 1}, p = 0, . . . , L− 1,

V∞ := {0} × ZL,

where all integers are understood as elements of ZL. For p ∈
{0, 1, . . . , L − 1,∞} fixed, the sets Vp + (0, q), q = 0, . . . , L − 1
are all distinct and therefore constitute a full set of cosets of Vp
in ZL × ZL; moreover, the sets [Vp + (0, q)] × [Vp + (0, q′)],
q, q′ = 0, . . . , L − 1 constitute a full set of cosets of Vp × Vp in
(ZL × ZL)× (ZL × ZL).

We consider patterns of the form

(iii) Γ = {(λq,q′ , λ̃q,q′)}L−1
q,q′=0 ⊂ (ZL × ZL) × (ZL × ZL),

where λq,q′ ∈ Vp+(0, q) and λ̃q,q′ ∈ Vp+(0, q′) with fixed
p ∈ {0, 1, . . . , L− 1,∞},

whose constructions are illustrated in Fig. 4. Notice that e.g., both
λq,0 and λq,1 belong in the coset Vp + (0, q) ⊂ ZL × ZL but they
are not necessarily the same.

Theorem 4: Let L ≥ 2 be a prime and let Γ ⊂ (ZL × ZL) ×
(ZL × ZL) be any pattern of type (iii). The matrix G(c)⊗G(c)|Γ
is invertible for all c in a dense open subset of CL with full measure.
Moreover, there exists c ∈ CL for which G(c)⊗G(c)|Γ is unitary;
explicitly, c can be chosen from the set {Dpun}L−1

n=0 if p < ∞
and {en}L−1

n=0 if p = ∞, where D is the L × L diagonal matrix
whose n-th diagonal entry is ω0+1+...+(n−1) = ωn(n−1)/2, un =
(1, ωn, . . . , ω(L−1)n)T is the n-th column of WL, and en is the
n-th canonical basis vector.

So, if the channel is known to have a support pattern of type
(iii), one can also pick c ∈ CL randomly like in the cases (i) and
(ii). However, the strength of Theorem 4 is that it provides explicit
vectors c ∈ CL for which G(c)⊗G(c)|Γ is not only invertible but
also unitary; this obviously implies a stable recovery of vec(X) in
Eqn. (1).

We remark that there exist psd-patterns of type (iii). For exam-
ple, the upper-left 3 × 3 and the lower-right 3 × 3 corners in Fig. 4
(left), are psd patterns.
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5. APPENDIX – PROOFS

5.1. Proof of Theorem 1

We will use several times the fact that the linear map X 7→ AXA∗

is injective on {X ∈ CN×N : suppX ⊆ Γ} if and only if A⊗A|Γ
is injective.
(a) ⇔ (b): If A|Λ is injective, i.e., rankA|Λ = |Λ| ≤ m, then
rank(A⊗A|Λ×Λ) = (rankA|Λ)2 = |Λ|2 and hence A⊗A|Λ×Λ

is injective. Conversely, if A⊗A|Λ×Λ is injective, then for any vec-
tor v ∈ CN with suppv ⊆ Λ and Av = 0, we have Avv∗A∗ = 0
where suppvv∗ ⊆ Λ× Λ, so that vv∗ = 0, hence, v = 0.
(b)⇒ (c), (d), (e): These are trivial because the respective patterns
are all contained in Λ× Λ.
(c) ⇒ (a): Suppose that v ∈ CN is a nontrivial vector with
suppv ⊆ Λ and Av = 0. We write v = v1 + v2 6= 0 with
suppv1 ⊆ Λ1 and suppv2 ⊆ Λ2. Then Av1 = A(−v2) im-
plies Av1v

∗
1A
∗ = Av2v

∗
2A
∗, so that ANA∗ = 0 where N =

v1v
∗
1 − v2v

∗
2 ∈ CN×N is a nontrivial matrix supported in (Λ1 ×

Λ1) ∪ (Λ2 × Λ2). This contradicts with A ⊗A|(Λ1×Λ1)∪(Λ2×Λ2)

being injective. Therefore, A|Λ is injective.
(e)⇒ (d): We may choose Λ1 = {λ} and Λ2 = Λ\{λ}.
(d) ⇒ (a): Suppose that v ∈ CN is a nontrivial vector with
suppv ⊆ Λ and Av = 0. As before, we write v = v1 + v2 6= 0
with suppv1 ⊆ Λ1 and suppv2 ⊆ Λ2. If v1 6= 0 and v2 6= 0, then
Av1 = A(−v2) yields ANA∗ = 0 where N = v1v

∗
2 − v2v

∗
1 ∈

CN×N is a nontrivial matrix supported in (Λ1 × Λ2) ∪ (Λ2 × Λ1).
If v1 6= 0 and v2 = 0, then pick any λ2 ∈ Λ2 and let R be
the n × n matrix whose λ2-th column is v1 and all zero in other
columns. Then ANA∗ = 0, where N = R + R∗ ∈ CN×N is a
nontrivial matrix supported in (Λ1 × {λ2}) ∪ ({λ2} × Λ1). The
case where v1 = 0 and v2 6= 0 is similar. In all three cases, we get
a contradiction with the fact that A ⊗A|(Λ1×Λ2)∪(Λ2×Λ1)∪ diag(Λ)

is injective. Therefore, A|Λ is injective. This completes the proof.

5.2. Proof of Theorem 3

First, we write G(c) ⊗ G(c)|Γ = [A(0) |A(1) | . . . |A(L−1)],
where A(k) is the L2 × L submatrix consisting of the columns in-
dexed by {(k, `, k, n) : (n, `) ∈ Sk}, where Sk = {(nk,`, `)}L−1

`=0

for type (i), and Sk = {(n, `k,n)}L−1
n=0 for type (ii). Applying the

extended Laplace expansion (see e.g., [7]), we obtain

det(G(c)⊗G(c)|Γ) (4)

=
∑
B

sgn(B) · det(A(0)(B0)) · . . . · det(A(L−1)(BL−1)),

where B = (B0, . . . , BL−1) runs through all ordered partitions of
row indices ZL×ZL with |B0| = . . . = |BL−1| = L. Here sgn(B)

denotes the sign (±1) of the permutation
(
{0}×ZL ··· {L−1}×ZL
B0 ··· BN−1

)
,

and A(k)(Bk) is the L×L submatrix of A(k) formed with the rows
indexed by Bk.

Since every entry of G(c) ⊗ G(c) is of the form ciωp cjω
q

with i, j, p, q ∈ ZL, the det(G(c) ⊗ G(c)|Γ) is a homoge-
neous polynomial in ci cj , i, j = 0, . . . , L − 1, i.e., a linear
combination of {cα0

0 cα1
1 . . . c

αL−1

L−1 cβ00 cβ11 . . . c
βL−1

L−1 : αi, βi ∈
N ∪ {0},

∑L−1
i=0 αi = L,

∑L−1
i=0 βi = L}. We will show that

for any pattern Γ of type (i) or (ii), det(G(c) ⊗ G(c)|Γ) is not
identically zero. Since there exist only finitely many such patterns,
we then obtain a finite collection F of nonzero polynomials each
representing det(G(c) ⊗ G(c)|Γ) for a pattern Γ. Note that for

any nonzero polynomial p = p(c0, . . . , cL−1, c0, . . . , cL−1), the set
Z(p) = {(c0, . . . , cL−1) ∈ CL : p = 0} is a closed subset of CL
with empty interior and has zero Lebesgue measure. Therefore, by
excluding the set ∪p∈FZ(p) from CL we obtain a desired set.

For patterns of type (i), we consider the partition B = (ZL ×
{0},ZL×{1}, . . . ,ZL×{L−1}) of ZL×ZL. Then det(A(0)(B0))·
. . . · det(A(L−1)(BL−1)) = cL0 c

L
1 . . . c

L
L−1 c

L2

0 · ω
∑L−1

k,`=0
knk,` ·

[det(WL)]L. It is easily seen that the monomial cL0 cL1 . . . cLL−1 c
L2

0 =

(c0c0)L(c1c0)L . . . (cL−1c0)L is obtained only from this particu-
lar choice of partition. Therefore, this monomial appears with the

nonzero coefficient ω
∑L−1

k,`=0
knk,` · [det(WL)]L (up to a ± sign) in

det(G(c)⊗G(c)|Γ), which shows that det(G(c)⊗G(c)|Γ) is not
identically zero.

For patterns of type (ii), we consider the partition B′ =
({0} × ZL, {1} × ZL, . . . , {L − 1} × ZL) of ZL × ZL. Sim-
ilarly, we conclude that the monomial cL2

0 cL0 c
L
1 . . . c

L
L−1 appears

with the nonzero coefficient ω
∑L−1

k,`=0
k`k,n · (detWL)L in the de-

terminant of G(c) ⊗ G(c)|Γ, hence, det(G(c) ⊗ G(c)|Γ) is not
identically zero. This completes the proof.

5.3. Proof of Theorem 4

Proposition 5 ( [10]): Let L ∈ N be a prime and let D, un, en be
as introduced in the statement of Theorem 4.
(a) For any j, p, q, n = 0, . . . , L−1, there existsN(j, p, q, n) ∈ ZL
such that M jp+qT jDpun = ωN(j,p,q,n)Dpun+q . For any j, n =
0, . . . , L− 1, we have M jen = ωjnen.
(b) Let S ⊂ ZL × ZL with |S| = L. There exists c ∈ CL with
[π(λ)c]λ∈S ∈ CL×L unitary if and only if exists p ∈ {0, 1, . . . , L−
1,∞} such that S+Vp = ZL×ZL. In this case, the vector c ∈ CL
can be chosen from the set {Dpun}L−1

n=0 if p <∞, and {en}L−1
n=0 if

p =∞.

It should be noted that {Dpun}L−1
n=0 forms an orthonormal basis

for CL. Proposition 5(a) implies that this is a full set of eigenvectors
for every operators in {π(λ) : λ ∈ Vp}. Moreover, for c = Dpun
fixed we have that π(λ)c = Dpun+q up to a phase factor for every
λ in Vp + (0, q). Similarly, {en}L−1

n=0 is a full set of eigenvectors
for every operators in {π(λ) : λ ∈ V∞}; moreover, for c = en
fixed we have that π(λ)c = en+q up to a phase factor for every λ in
V∞ + (q, 0).

Proof (Theorem 4): If p < ∞, then fix any c = Dpun with n ∈
ZL. For q, q′ = 0, . . . , L − 1, we have π(λq,q′)c ⊗ π(λ̃q,q′)c =

Dpun+q ⊗Dpun+q′ up to a phase factor. Since {Dpuq}L−1
q=0 is

an orthonormal basis for CL, the vectors {π(λq,q′)c ⊗ π(λ̃q,q′)c :

q, q′ = 0, . . . , L− 1} form an orthonormal basis for CL
2

.
If p = ∞, then fix any c = en with n ∈ ZL. For q, q′ =

0, . . . , L − 1, we have π(λq,q′)c ⊗ π(λ̃q,q′)c = en+q ⊗ en+q′ up
to a phase factor. Since {eq}L−1

q=0 is an orthonormal basis for CL,
the vectors {π(λq,q′)c⊗ π(λ̃q,q′)c : q, q′ = 0, . . . , L− 1} form an
orthonormal basis for CL

2

.
Moreover, the existence of a single vector c ∈ CL for which

G(c)⊗G(c)|Γ is unitary implies that det(G(c)⊗G(c)|Γ) is a non-
trivial polynomial in the variable c0, . . . , cL−1, therefore, the vectors
c ∈ CL for which G(c) ⊗ G(c)|Γ is invertible constitute a dense
open subset of CL with full measure.

4387



6. REFERENCES

[1] B. Ottersten, P. Stoica, and R. Roy, “Covariance matching es-
timation techniques for array signal processing applications,”
Digital Signal Processing, vol. 8, no. 3, pp. 185–210, 1998.

[2] L. L. Scharf, Statistical Signal Processing: Detection, Estima-
tion, and Time Series Analysis. Addison–Wesley Publ. Inc.,
1991.

[3] G. E. Pfander and P. Zheltov, “Sampling of stochastic opera-
tors,” IEEE Trans. Inf. Theory, vol. 60, no. 4, pp. 2359–2372,
Mar. 2014.

[4] G. Dasarathya, P. Shah, B. Bhaskar, and R. Nowak, “Sketching
sparse matrices, covariances, and graphs via tensor products,”
IEEE Trans. Inf. Theory, vol. 61, no. 3, pp. 1373–1388, Mar.
2015.

[5] D. Romero, D. D. Ariananda, Z. Tian, and G. Leus, “Compres-
sive covariance sensing: Structure-based compressive sensing
beyond sparsity,” IEEE Signal Process. Mag., vol. 33, no. 1,
pp. 78–93, Jan. 2016.

[6] G. E. Pfander and P. Zheltov, “Estimation of overspread scat-
tering functions,” IEEE Trans. Signal Process., vol. 63, no. 10,
pp. 2451–2463, May 2015.

[7] J. Lawrence, G. E. Pfander, and D. Walnut, “Linear indepen-
dence of gabor systems in finite dimensional vector spaces,” J.
Fourier Anal. Appl., vol. 11, no. 6, pp. 715–726, 2005.

[8] R.-D. Malikiosis, “A note on gabor frames in finite dimen-
sions,” Appl. Comput. Harmon. Anal., vol. 38, no. 2, pp. 318–
330, 2015.

[9] S. D. Howard, A. R. Calderbank, and W. Moran, “The fi-
nite heisenberg-weyl groups in radar and communications,”
EURASIP Journal on Advances in Signal Processing, vol.
2006:085685, pp. 1–12, 2006.

[10] G. E. Pfander and W. Zhou, “Irregular orthonormal gabor ba-
sis in finite dimensions and applications,” in Proc. 12th In-
tern. Conf. on Sampling Theory and Applications (SampTA),
Tallinn, Estonia, Jul. 2017, pp. 303–307.

4388


