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ABSTRACT

A generating matrix is a matrix such that, when multiplied by
an eigenvector of a discrete transform, a new eigenvector is
obtained. In this paper, we introduce a family of generating
matrices of DFT eigenvectors. We demonstrate that, if a spe-
cific initial set of eigenvectors is chosen, using the referred
family of matrices, a Hermite-Gaussian-like DFT eigenbasis
is obtained. Such an eigenbasis is then employed to define
a discrete fractional Fourier transform which numerically ap-
proximates the corresponding continuous transform.

Index Terms— Generating matrices, eigenstructure of
discrete Fourier transform, Hermite-Gaussian-like eigenvec-
tors, fractional Fourier transform

1. INTRODUCTION AND RELATED WORK

Techniques for constructing eigenvectors of the discrete
Fourier transform (DFT) have been widely investigated in
the last decades. In the field of signal processing, the main
motivation for developing such techniques is related to the
definition of discrete fractional Fourier transforms (DFrFT),
which have been employed in several applications [1–11] and
can be established from the spectral expansion of the DFT
matrix operator F. To be more specific, the vectors {em},
m = 0, 1, . . . , N − 1, of an orthonormal DFT eigenbasis can
be used as the columns of E in

F = EΛET ; (1)

the diagonal matrix Λ contains the eigenvalues of F, given by
the fourth complex roots of unity. This allows us to compute

Fa = EΛaET , (2)

the DFrFT matrix operator with fractional order a ∈ R.
Among the techniques for constructing DFT eigenvec-

tors, those based on closed formulae have received special
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attention in the last years. Such methods may provide some
computational advantages compared, for instance, to those
based on matrices commuting with F. In this context, the
work published by F. N. Kong in 2008 has particular rele-
vance [12]; in that paper, closed-form zeroth and first order
Hermite-Gaussian-like (HGL) vectors were proposed 1. Re-
cently, in [14] and [15], Kong’s approach was generalized
and dilated versions of the referred vectors were constructed.

More specifically, in [14], the dilated zeroth and first order
HGL vectors have components respectively given by

um(k)=N2L+m
2L∏

s=L−m+1

[
cos

(
k
2π

N

)
− cos

(
s
2π

N

)]
(3)

=S(3L+m+ k)S(3L+m− k) (4)

and
vm(k) = sin

(
k
2π

N

)
um(k), (5)

where 0 ≤ m ≤ N − 1, N = 4L + 12 and k ∈ IN ,
IN := {−M+1,−M+2, . . . ,−M+N} andM = bN+1

2 c;
the sequence {S(k)}k≥0 is defined by S(0) := 1 and S(k) :=∏k
j=1 2 sin(πj/N), for k ≥ 1. The author obtained orthonor-

mal HGL DFT eigenbases by linearly combining such dilated
vectors and their DFT, and applying an orthogonalization al-
gorithm. In [15], the authors employed a generating ma-
trix method [16] to obtain sets of HGL DFT eigenvectors for
N ≡ 1 (mod 4). In [13], the first two authors of this paper
considered the sets given in [14] and [15]; using some creative
strategies, they removed restrictions of the cited approaches
and explained how the respective sets of DFT eigenvectors
can be used to define a DFrFT.

In this paper, we introduce an alternative procedure for
constructing the HGL DFT eigenbases given in [14]. For each
eigenspace of F, we use an initial eigenvector and obtain the
remaining ones employing a certain family of generating ma-
trices. The procedure finishes after the orthogonalization of

1In order to the DFrFT numerically approximate the continuous fractional
Fourier transform, the eigenvectors applied as columns of E in (2) should be
discrete analogs of continuous Hermite-Gaussian functions [13].

2Expressions for um(k) and vm(k) for other values of N are omitted in
this paper, but can be found in [14].

4379978-1-5386-4658-8/18/$31.00 ©2018 IEEE ICASSP 2018



the resulting eigenvector sets. Due its recursion, the proposed
method is of simple implementation and can be used in the
definition of a DFrFT.

In the next section, we describe our method and demon-
strate that it produces the mentioned HGL DFT eigenbases.
In Section 3, we employ the generated bases to define DFrFT
and provide an application example. The concluding remarks
of this paper are presented in Section 4.

2. MATRICES FOR GENERATING
HERMITE-GAUSSIAN-LIKE DFT EIGENVECTORS

In this paper, we consider a centered version of the discrete
Fourier transform. The matrix F of such a DFT has in its
(k+M)-th row and (n+M)-th column the entry F (k, n) =
e−i

2π
N kn, n ∈ IN .
It has been shown that, if v is an eigenvector of F with

eigenvalue λ, the vector vA = S(A)v, where S(A) =
α1/2F−1AF + A and A satisfies F2AF2 = αA, is an
eigenvector of F with eigenvalue α1/2λ [16]; S(A) is identi-
fied as a generating matrix. We then define a diagonal matrix

Gm = diag

(
2 cos

(
2πn

N
m

))
, n ∈ IN , 0 ≤ m ≤ N − 1,

satisfying F2GmF2 = A, so that v and vGm
= S(Gm)v

are eigenvectors of F with the same eigenvalue λ.
In what follows, w0, x0, y0 and z0 denote the first eigen-

vectors of the eigenspaces related to eigenvalues 1, −i, −1
and i of F, respectively, obtained in [14] by the linear com-
bination of dilated zeroth and first order HGL vectors; #{λ}
denotes the multiplicity of eigenvalue λ. From this point for-
ward, we restrict our results toN ≡ 1(mod4). Similar results
can be obtained for other values of N .

Definition 1. Let g0 = w0, g1 = x0, g2 = y0 and g3 = z0.
The set {gm}0≤m≤N−1 is constituted of DFT eigenvectors
obtained according to

g4m = S(Gm)g0, m = 1, 2, ... ,#{1} − 1,

g4m+1 = S(Gm)g1, m = 1, 2, ... ,#{−i} − 1,

g4m+2 = S(Gm)g2, m = 1, 2, ... ,#{−1} − 1,

g4m+3 = S(Gm)g3, m = 1, 2, ... ,#{i} − 1.

In Definition 1, each subset {g4m+l}0≤m≤#{(−i)l}−1 is
composed by eigenvectors related to eigenvalue (−i)l, 0 ≤
l ≤ 3. The next theorem is the main result of this paper.

Theorem 1. The set {g⊥m}0≤m≤N−1, obtained after the or-
thogonalization of each eigenvector subset constructed using
Definition 1, is the HGL DFT eigenbasis {φ⊥m}0≤m≤N−1 de-
scribed in [14].

Theorem 1 can be proved by demonstrating that the eigen-
vectors of each subset constructed according to Definition 1
are linear combinations of the vectors of the corresponding

eigenspace basis described in [14] (before the orthogonaliza-
tion process). In order to develop this idea, we first rename
vectors {gm}0≤m≤N−1 as

{w′m}0≤m≤(#{1}−1) = {g4m}0≤m≤(#{1}−1),
{x′m}0≤m≤(#{−i}−1) = {g4m+1}0≤m≤(#{−i}−1),
{y′m}0≤m≤(#{−1}−1) = {g4m+2}0≤m≤(#{−1}−1),
{z′m}0≤m≤(#{i}−1) = {g4m+3}0≤m≤(#{i}−1).

We then introduce the following lemma, which can be eas-
ily proved by using Definition 1 and the fact that S(Gm) =
F−1GmF + Gm.

Lemma 1. The vectors of the set {gm}0≤m≤N−1 can be ex-
pressed as

w′m = Gmw0 + FGmw0,

x′m = Gmx0 + iFGmx0,

y′m = Gmy0 − FGmy0,

z′m = Gmz0 − iFGmz0.

Lemma 2. The vectors Gmun and Gmvn, n < m, can be
expressed respectively as

Gmun = um+n + αm+n−1um+n−1 + · · ·+ αnun (6)

and

Gmvn = vm+n + αm+n−1vm+n−1 + · · ·+ αnvn, (7)

where the {αk}n≤k≤m+n−1 are constants.

Proof. We first assume that m = n+ 1 and use the fact that

um(k) =

(
2 cos

(
2πk

N

)
− 2 cos

(
2π(3L+m)

N

))
um−1(k),

which has been demonstrated in [14]. The last equation can
be written as

um(k) = (G1(k)− cm)um−1(k),

whereGm(k) = 2 cos
(
2πk
N m

)
and cm = 2 cos

(
2π(3L+m)

N

)
.

Therefore

G1(k)um−1(k) = um(k) + cmum−1(k) (8)

and, since vm(k) = sin
(
2πk
N

)
um(k), one has

G1(k)vm−1(k) = vm(k) + cmvm−1(k). (9)

Similarly, for m = n+ 2, one obtains

um(k) = (G1(k)− cm)(G1(k)− cm−1)um−2(k)
= (G2(k)−G1(k)(cm + cm−1) + cmcm−1 + 2)um−2(k).

Using (8) in the last equality, one has

um(k) = G2(k)um−2(k)− (cm + cm−1)

(um−1(k) + cmum−2(k)) + (cmcm−1 + 2)um−2(k),

G2(k)um−2(k) = um(k) + (cm + cm−1)um−1(k)+

+ (cmcm−1 − 2)um−2(k).
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Recursively applying the product of two cosines identity
and (8) (resp. (9)), Gmun (resp. Gmvn), n < m, can be
written in terms of the vectors in the set {uk}n≤k≤m+n (resp.
{vk}n≤k≤m+n), as shown in (6) (resp. (7)). �

Proposition 1. Let dn = N−
1
2S(2L+2n). For 0 ≤ n ≤ 2L,

(i) dnd−n = 1 and (ii) d0 = 1.

Proof. (i) For 0 ≤ n ≤ 2L, one has

dnd−n = N−
1
2S(2L+ 2n)N−

1
2S(2L− 2n)

= N−1S(2L+ 2n)S(2L− 2n).

Using the substitution k = 2L + 2n and the fact that
S(k)S(N − k − 1) = N [14], one obtains

dnd−n = N−1S(k)S(N − k − 1) = N−1N = 1.

(ii) For 0 ≤ n ≤ 2L, using S(k)S(N − k − 1) = N with
k = 2L, one concludes that S(2L) = N

1
2 . Therefore

d0 = N−
1
2S(2L) = N−

1
2N

1
2 = 1.

�

Proposition 2. Let δn = N−
1
2S(2L+2n+1). For 0 ≤ n ≤

2L, δnδ−n−1 = 1.

Proof. One may write

δnδ−n−1 = N−
1
2S(2L+ 2n+ 1)N−

1
2S(2L− 2n− 2 + 1)

= N−1S(2L+ 2n+ 1)S(2L− 2n− 1).

Using the substitution k = 2L+ 2n+ 1, one has

δnδ−n−1 = N−1S(k)S(N − k − 1) = N−1N = 1. �

Expressions for w0, x0, y0 and z0 can be rewritten using
dn and δn as

w0 = u0 + d0u0 = 2u0, x0 = v0 + δ0v−1,

y0 = −u1 + d1u−1, z0 = −v0 + δ0v−1.

Using Lemma 1, y′m can be rewritten as

y′m = Gmy0 − FGmy0

= Gm(−u1 + d1u−1)− FGm(−u1 + d1u−1).

Using (6) in the last equality, one obtains

y′m = −(um+1 + αmum + · · ·+ α1u1)+

+ d1(um−1 + βm−2um−2 + · · ·+ β−1u−1)+

− F (−(um+1 + αmum + · · ·+ α1u1) +

+ d1(um−1 + βm−2um−2 + · · ·+ β−1u−1)),

y′m = −um+1 − αmum + (d1 − αm−1)um−1 + · · ·+
+ (d1βk − αk)uk + · · ·+ d1β0u0 + d1β−1u−1+

− F(−um+1 − αmum + (d1 − αm−1)um−1 + · · ·+
+ (d1βk − αk)uk + · · ·+ d1β0u0 + d1β−1u−1).

Carrying out the multiplication by F in the second part of the
above equation, one has

y
′

m = −um+1 − αmum + (d1 − αm)um−1 + · · ·+
+ (d1βk − αk)uk + · · ·+ d1β0u0 + d1β−1u−1+

+ dm+1u−m−1 − αmdmu−m + · · ·+
− (d1βk − αk)dku−k + · · ·+ d1β0d0u0 + d1β−1d−1u1.

Using Proposition 1(i) and 1(ii), the terms related to uk and
u−k, 0 ≤ k ≤ m, can be grouped as

y′m = (−um+1 + dmu−m−1)− αm(−um + dmu−m)+

· · ·+ (d1βk − αk)(−uk + dku−k)+

· · ·+ (d1β1 − α1)(u1 − d1u−1) + (d1β0 − d1β0)u0+

+ (d1β−1u−1 − β−1u1),

y′m = (−um+1 + dmu−m−1)− αm(−um + dmu−m)+

· · ·+ (d1βk − αk)(−uk + dku−k)+

· · ·+ (α1 − β−1 − d1β1)(−u1 + d1u−1),

y′m = ym − αmym−1 + · · ·+ (d1βk+1 − αk+1)yk+

· · ·+ (α1 − β−1 − d1β1)y0.

In the last equation, the vector y′m is expressed as a linear
combination of vectors {yk}0≤k≤m. Using the intermmedi-
ate results we have derived and performing steps analogous to
those we have presented, one obtains an equivalent result for
vectors w′m, x′m and z′m. This concludes the proof of Theo-
rem 1.

In Fig. 1, we illustrate the convergence of HGL eigenvec-
tors {g⊥m}0≤m≤N−1 to continuous Hermite-Gaussian func-
tions {ψm}0≤m≤N−1 as N grows, by exhibiting the root-
mean-square error between g⊥24 and samples of ψ24, for N =
20R+5, R = 1, 2, ..., 20. A similar curve is obtained if other
eigenvectors are considered.

3. DISCRETE FRACTIONAL FOURIER
TRANSFORM BASED ON HGL EGENVECTORS

The HGL eigenbasis {g⊥m}0≤m≤N−1 constructed using the
family S(Gm) of generating matrices can be employed in
place of vectors {em}0≤m≤N−1 in (1) to spectrally expand
the DFT matrix F. This allows us to compute the DFrFT
matrix operator Fa as in (2). In this section, we consider an
illustrative application scenario of such a DFrFT: filtering in
fractional Fourier domain [2].

We have created a signal by adding to the Gaussian pulse

x(t) = e−
(t−30)2

20 (10)

the chirp signal

c(t) = 0.2 cos

(
t2

10
− 2t

)
. (11)
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Fig. 1. Root-mean-square error between the HGL eigenvector
g⊥24 and samples of the continuous Hermite-Gaussian ψ24, for
N = 20R+ 5, R = 1, 2, ..., 20.

The resulting signal in time-domain is shown in Fig. 2(a). In
Fig. 2(b), where its Wigner distribution can be viewed, the
Gaussian component is related to the stronger colored element
with the shape of a vertically compressed ellipse. We want to
remove the chirp component by computing succesive DFrFT
of the signal; this takes into account the fact that such a com-
putation produces rotations in the Wigner distribution [1, 4].
In order to apply this strategy, we have discretized the signal
by collecting N = 315 samples in the interval 0 ≤ t ≤ 40.

All steps described from this point forward were pe-
formed by considering the DFrFT defined using (i) the basis
{g⊥m}0≤m≤N−1 and (ii) the eigenbasis obtained from a ma-
trix commuting with F [17]; (iii) the method proposed in [18]
was also employed. We first apply a DFrFT with fractional
order a = 3.1. The result (signal in fractional-domain and
Wigner distribution) is shown in Fig. 2(d), where one can
see that, by means of a stop-band filter, part of the undesired
components can be removed [13]. This produces the signal
shown in Fig. 2(e). We then apply a DFrFT with fractional
order a = −2.2 and obtain the signal shown in Fig. 2(f). An-
other stop-band filtering is performed, producing the signal
presented in Fig. 2(g). Finally, by computing another DFrFT,
the signal is returned to the original domain. The final re-
sult can be seen in Fig. 2(h), where we show the recovered
Gaussian signal and its Wigner distribution.

Except for slight fluctuations whose levels vary from one
method to another (see Fig. 2(h)), the final result is basically
the same for (i), (ii) and (iii). This can be better evaluated
by computing the signal-to-noise ratio (SNR) between recov-
ered and original Gaussian signals; the SNR for (i) proposed,
(ii) commuting matrix [17] and (iii) digital computation [18]
methods are 199 dB, 203 dB and 195 dB, respectively. This
suggests that, in the application focused in this section, the
considered methods provide equivalent results and, therefore,
the DFrFT based on the eigenbasis {g⊥m}0≤m≤N−1 may be
employed in practical scenarios.
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Fig. 2. (a) Gaussian signal plus chirp signal and (b) its Wigner
distribution; (c) labels for subfigures (d)-(h); (d)-(g) signal in
different DFrFT domains and corresponding Wigner distri-
butions before and after a stop-band filtering; (h) recovered
Gaussian signal in time-domain and its Wigner distribution.

4. CONCLUDING REMARKS

In this paper, a family of generating matrices for construct-
ing a DFT eigenbasis formed by HGL eigenvectors was pro-
vided. Such an eigenbasis was employed in the definition of
a DFrFT whose effectiveness in performing signal filtering
was confirmed. We are currently investigating the possibil-
ity of developing fast algorithms for computing the proposed
DFrFT and studying details related to its potential application
scenarios.
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