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ABSTRACT
Estimating envelope of a signal has various applications including
empirical mode decomposition (EMD) in which the cubic C2-spline
based envelope estimation is generally used. While such functional
approach can easily control smoothness of an estimated envelope,
the so-called undershoot problem often occurs that violates the ba-
sic requirement of envelope. In this paper, a tangentially constrained
spline with tangential points optimization is proposed for avoiding
the undershoot problem while maintaining smoothness. It is defined
as a quartic C2-spline function constrained with first derivatives at
tangential points that effectively avoids undershoot. The tangen-
tial points optimization method is proposed in combination with this
spline to attain optimal smoothness of the estimated envelope.

Index Terms— Empirical mode decomposition (EMD), spline
interpolation, quartic C2-spline, constrained optimization, adjoint-
state method.

1. INTRODUCTION

An envelope of a signal is a smooth wrapping curve containing much
information about the signal, and therefore it is widely considered in
signal processing [1]. One of the applications that envelope estima-
tion plays a crucial role is empirical mode decomposition (EMD) [2].
It is a data-driven technique for non-stationary signal analysis [3–6]
and has been applied in various fields [7–11].

The accuracy of EMD is determined by the accuracy of enve-
lope estimation because subtraction of the mean of upper and lower
envelopes is the central step in the process of EMD (see Sec. 2.1).
The popular method for estimating envelopes in EMD and its vari-
ants [12–15] is based on the cubic C2-spline interpolation [2–15].
Although this approach can obtain smooth envelopes, it suffers from
the so-called undershoot problem which violates the basic require-
ment of envelopes and leads to erroneous results.

Many approaches have been proposed to replace the cubic C2-
spline interpolation so that the estimation accuracy of envelopes im-
proves, such as B-spline [16], piecewise quadratic functions [17],
segment power functions [18] and other spline functions [19–21].
However, these methods are often heuristic and lack discussion on
optimality. On the other hand, approaches based on constrained op-
timization can incorporate desired properties through the constraint
so that an optimal envelope is obtained [22–24]. Nevertheless, their
models are usually too flexible for practical use because they in-
volve an excessive number of parameters in contrast to the above
functional approaches. An approach between the two should be a
preferable choice, i.e., one that constrains an interpolation function
but leads to a small number of parameters.

In this paper, an envelope estimation method using a quarticC2-
spline function constrained with first derivatives, named tangentially
constrained spline, is proposed together with a gradient-based tan-
gential points optimization method. The proposed method estimates
an optimal envelope in terms of its smoothness while the undershoot
problem is circumvented owing to the constraint.

2. PRELIMINARIES

2.1. Empirical mode decomposition (EMD)

EMD aims to decompose a multicomponent signal u(t) into intrinsic
mode functions (IMFs) {mk(t)}Mk=1, which are locally zero-mean
oscillatory components, and residual r(t) which represents trend.
The algorithm of EMD proposed in [2] is summarized as follows:
Step 1. Initialize r(t) = u(t), and k = 1.
Step 2. Extract the kth IMF mk(t):

(a) Initialize mk(t) = r(t).
(b) Find all local extrema of mk(t).
(c) Calculate upper envelope emax(t) (resp. lower enve-

lope emin(t)) by interpolating all maxima (resp. min-
ima) using the cubic C2-spline.

(d) Update mk(t) = mk(t)− (emax(t) + emin(t)) /2.
(e) Repeat Steps (b)–(d) until it converges to an IMF.

Step 3. Update r(t) = r(t)−mk(t).
Step 4. Repeat Steps 2 and 3 with k = k + 1 until the stopping

criterion is satisfied.
The main process of EMD is subtraction of the mean value of upper
and lower envelopes. Therefore, the accuracy of EMD is decided by
the accuracy of envelope estimation.

2.2. Spline functions and cubic C2-spline interpolation

A spline is a continuous function defined by piecewise polynomials
that has been widely used in signal processing owing to its flexi-
bility and optimality [25]. Let an interval [x0, xn] be divided into
n subintervals by a grid x = [x0, x1, . . . , xn]T ∈ Rn+1 such that
x0 < x1 < . . . < xn, and let ρ, d ∈ Z such that 0 ≤ ρ < d,
where AT denotes transpose of A. The set of ρ times continuously
differentiable spline functions of degree d on grid x is defined as

Sρd(x) = {f ∈ Cρ([x0, xn]) | f=fk∈ Pd on [xk, xk+1] ∀k}, (1)

where Cρ(Ω) is the set of ρ times continuously differentiable func-
tions on Ω, and Pd is the set of all polynomials whose degree is at
most d.

One of the reasons for spline’s popularity comes from its opti-
mality in terms of smoothness. Let us consider spline interpolation
which is a problem of finding a spline function passing through all
given points (xk, yk). The most standard spline for this task is cubic
C2-spline, S2

3(x), because its interpolant is optimally smooth and
characterized by a solution to the following optimization problem:

minimize
s∈S2

3(x)

1

2

∫ xn

x0

|s′′(t)|2dt

subject to s(xk) = yk for all k, (2)

where s′′(t) denotes second derivative of s(t). That is, a spline in-
terpolant in S2

3(x) automatically becomes the smoothest function
among all cubicC2-spline functions passing through the data points.
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Fig. 1. Schematic of estimated envelopes obtained by (a) the conven-
tional cubic C2-spline interpolation, and (b) the proposed method.

2.3. Related research on envelope estimation

Since a spline function can handle smoothness easily as in the pre-
vious subsection, it has been widely adopted to the envelope estima-
tion problems [2–15]. However, directly interpolating extrema as in
the EMD algorithm in Sec. 2.1 often causes the so-called undershoot
problem which is illustrated in Fig. 1 (a). The conventional envelope
estimation by cubic C2-spline interpolation in Fig. 1 (a) resulted in
an envelope whose magnitude is below the signal at certain points.
This is a violation of the definition of envelope which “wraps” the
signal, i.e., an envelope must not cross the signal. Such undershoot
is a great source of artifacts contaminating the results of EMD [26],
and thus it should be avoided.

For estimating an envelope without undershoot, approaches
based on constrained optimization have been proposed [23, 24].
Since these methods consider signal values at every sample point
as optimization variables, various kinds of constraints promoting
desired properties of envelope can be incorporated. Although such
methods are quite flexible, they might be too time-consuming be-
cause the number of parameters usually becomes very large.

On the other hand, many methods based on spline functions have
been proposed to avoid undershoot with less number of parame-
ters [17–21]. One direction of this research is to modify the class
of functions so that undershoot is circumvented [17–19]. However,
such modification of the set of functions is somewhat heuristic, and it
may not be easy to consider its optimality. Another notable direction
of the research is based on first derivatives [20, 21]. These methods
modify interpolation points so that first derivatives of an envelope at
tangential points become close to those of the signal. This point of
view is reasonable because the definition of an envelope in geometry
usually contains such a tangential condition. However, they consider
the tangential condition only approximately. In addition, they did not
consider optimality on smoothness.

3. PROPOSED METHOD

In this section, we propose a tangentially constrained spline for enve-
lope estimation (Sec. 3.1) that can be made optimally smooth by the
proposed tangential points optimization (Sec. 3.2). Schematic ex-
planation of the proposed method is shown in Fig. 1 (b), where the
dotted red line represents the tangentially constrained spline which
is tangent to signal at interpolation points. By optimizing the tan-
gential points, it becomes optimally smooth as the thick red line in
Fig. 1 (b) because the points are optimized based on its smoothness.
In contrast to the previous research introduced in the previous sub-
section, the proposed method estimates an envelope which is strictly
tangent at interpolation points and is optimally smooth.

3.1. Tangentially constrained spline for envelope estimation

One of the reasons that an estimated envelope has non-desirable fea-
tures such as undershoot is neglect of the property of the envelope,
that is, an envelope must be tangent to the signal at interpolation
points. Since extrema are points where first derivative of the signal
changes its sign, an interpolant of the maxima tangent to the signal
at those points locally becomes an upperbound of the signal. There-
fore, an envelope should be tangent at certain points around extrema
of the signal.

Based on this observation, we propose tangentially constrained
spline sTC which is a quartic C2-spline function constrained with
first derivatives and characterized as an optimal solution of the fol-
lowing optimization problem:

minimize
sTC∈S2

4(τ)

1

2

∫ τn

τ0

|s′′TC(t)|2dt

subject to sTC(τk) = u(τk)

s′TC(τk) = u′(τk) for all k, (3)

where τ = [τ0, τ1, . . . , τn]T ∈ Rn+1 denotes tangential points of
u(t) such that τ0 < τ1 < . . . < τn. In order to consider first deriva-
tive in addition to Eq. (2), the degree of the piecewise polynomials
is increased from cubic, S2

3(τ ), to quartic, S2
4(τ ). By constraining

the first derivative at the tangential points, the proposed spline is tan-
gent to the signal at those points. The benefit of doing this will be
demonstrated by an example in the next experimental section.

This problem can be discretized without any approximation
thanks to the properties of spline. Let the optimization variables be
written in the standard form as in [27]:

s = [ zT ,pT ,PT ]T ∈ R3n+3, (4)

where z = [z0, . . . , zn]T ∈ Rn+1, p = [p0, . . . , pn]T ∈ Rn+1,
P = [P0, . . . , Pn]T ∈ Rn+1, zk = sTC(τk), pk = s′TC(τk), and
Pk = s′′TC(τk). Then, the integration in [τk, τk+1] is given by∫ τk+1

τk

|s′′TC(t)|2dt =
6

5hk

(
pk − pk+1 +

hk
12

(Pk + Pk+1)
)2

+
hk
24

(
3P 2

k − 2PkPk+1 + 3P 2
k+1

)
,

= sTkAksk, (5)

where sk = [zk, zk+1, pk, pk+1, Pk, Pk+1]T ∈ R6,

Ak =
1

30hk


0 0 0 0 0 0
0 0 0 0 0 0
0 0 36 −36 3hk 3hk
0 0 −36 36 −3hk −3hk
0 0 3hk −3hk 4h2

k −h2
k

0 0 3hk −3hk −h2
k 4h2

k

 , (6)

and hk = τk+1 − τk. By concatenating all intervals as in the form
of Eq. (4), a quadratic form is obtained as∫ τn

τ0

|s′′TC(t)|2dt =

n−1∑
k=0

∫ τk+1

τk

|s′′TC(t)|2dt = sTAs, (7)

where A ∈ R(3n+3)×(3n+3) is constructed in the same way as Ak.
Similarly, the constraint sTC ∈ S2

4(τ ) can be rewritten as

12(zk − zk+1) + 6hk(pk + pk+1) + h2
k(Pk − Pk+1) = 0, (8)
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for all k ∈ {0, 1, . . . , n−1}. By denoting the all constraints [Eq. (8),
sTC(τk) = u(τk), and s′TC(τk) = u′(τk) for all k] as a matrix E ∈
R(3n+2)×(3n+3) and b ∈ R3n+2, Eq. (3) is discretized as

minimize
s∈R3n+3

1

2
sTAs subject to Es = b. (9)

The solution to this problem is obtained by solving the Karush–
Kuhn–Tucker (KKT) system,

Kξ − b̃ = 0, (10)

where

ξ =

[
s
ν

]
, K =

[
A ET

E O

]
, b̃ =

[
0
b

]
, (11)

and ν ∈ R3n+2 is a KKT multiplier. From the optimal solution
to the discrete problem s?, the corresponding continuous function
s?TC ∈ S2

4(τ ) is recovered as

s?TC(t) = s?TCk(t) = [ 1, η, η2, η3, η4 ]Lks
?
k, (12)

for t ∈ [τk, τk+1] (k = 0, 1, . . . , n− 1), where

Lk =
1

12


12 0 0 0 0 0
0 0 12hk 0 0 0
0 0 0 0 6h2

k 0
0 0 −12hk 12hk −8h2

k −4h2
k

0 0 6hk −6hk 3h2
k 3h2

k

 , (13)

and η = (t− τk)/hk ∈ [0, 1].

3.2. Best interpolation points for tangentially constrained spline

Although the tangentially constrained spline sTC proposed in the pre-
vious subsection can avoid undershoot, its smoothness is sacrificed
for most of the choices of tangential points τ . In other words, the
tangentially constrained spline is smooth only when appropriate tan-
gential points are chosen as the interpolation points. Based on this
observation, a method of optimizing tangential points is also pro-
posed so that the proposed spline becomes the smoothest one.

The parameter s? obtained by solving the KKT system in
Eq. (10) corresponds to the smoothest tangentially constrained
spline s?TC for the given tangential points τ . That is, the spline and
its parameters can be considered as a function of τ . Therefore, an
optimization problem of tangential points is formulated as

minimize
τ∈Rn+1

I(τ ) =
1

2
s?(τ )TA(τ ) s?(τ ), (14)

which is a problem of finding tangential points τ resulting in the
smoothest tangentially constrained spline. Since s? is a solution to
Eq. (9) which satisfies the KKT system in Eq. (10), the above prob-
lem can be rewritten as a KKT constrained form:

minimize
τ∈Rn+1

1

2
ξT Ã(τ ) ξ subject to K(τ )ξ − b̃(τ ) = 0, (15)

where Ã = [[A,O]T , [O,O]T ]T . Note that the objective function
ξT Ã(τ ) ξ = sTA(τ ) s becomes s?TA(τ ) s? when the KKT con-
straint in Eq. (15) is satisfied.

In order to solve this non-linear optimization problem, a
gradient-based optimization method is considered in this paper.
Then, the gradient of the cost function ∇τ I(τ ) is required. How-
ever, its direct computation based on the chain rule involves the

Jacobian matrix ∂ξ?/∂τ which can be quite costly. Therefore, the
adjoint-state method [28, 29] is adopted for computing the gradient
without the Jacobian matrix.

Let the cost and constraint of Eq. (15) be compactly written as
f(ξ, τ ) = (1/2)ξT Ã(τ ) ξ and g(ξ, τ ) = K(τ )ξ − b̃(τ ). Then,
the Lagrangian associated with Eq. (15) is given by

L(ξ,λ, τ ) = f(ξ, τ )− λT g(ξ, τ ), (16)

where λ ∈ R3n+3 is an adjoint variable. If ξ satisfying the KKT
system, denoted by ξ?, is obtained, g(ξ?, τ ) = 0. Therefore,

L(ξ?,λ, τ ) = f(ξ?, τ ) = I(τ ). (17)

Then, the gradient∇τ I(τ ) can be represented as

∇τ I(τ ) = ∇τL(ξ?,λ, τ )

=

(
∂f

∂ξ

∂ξ?

∂τ
+
∂f

∂τ
− λT

(
∂g

∂ξ

∂ξ?

∂τ
+
∂g

∂τ

))T
=

((
∂f

∂ξ
− λT

∂g

∂ξ

)
∂ξ?

∂τ
+
∂f

∂τ
− λT

∂g

∂τ

)T
. (18)

As mentioned in the previous paragraph, the computationally expen-
sive part is ∂ξ?/∂τ , which is eliminated when λ? is chosen such that(

∂f

∂ξ
− λ?T

∂g

∂ξ

)T
= 0, (19)

where this choice of λ does not affect the objective function and
its gradient since I(τ ) = L(ξ?,λ, τ ) = L(ξ?,λ?, τ ) as shown in
Eq. (17). After some manipulations, this equation reduces to

Kλ? = Ãξ?. (20)

Therefore, by using ξ? and λ? which are obtained from Eqs. (10)
and (20), respectively, the gradient can be efficiently calculated as

∇τ I(τ ) = ∇τL(ξ?,λ?, τ )

=

(
∂f

∂τ
− λ?T

∂g

∂τ

)T
=

1

2
DT

Aξ? −
(
DK −

∂b̃

∂τ

)T
λ?, (21)

where DA and DK are derivatives corresponding to A and K as

DA =

[
∂Ã

∂τ0
ξ, . . . ,

∂Ã

∂τn
ξ

]
, DK =

[
∂K

∂τ0
ξ, . . . ,

∂K

∂τn
ξ

]
. (22)

For the optimization method, the Broyden–Fletcher–Goldfarb–
Shanno (BFGS) algorithm is used in this paper [30–33]. The BFGS
algorithm is a quasi-Newton method which approximates the inverse
Hessian matrix by the following update rule:

Hi+1 = Hi +

(
1 +

γTi Hiγi
δTi γi

)
δiδ

T
i

δTi γi
− Hiγiδ

T
i + δiγ

T
kHi

δTi γi
,

(23)
where δi = τ i+1 − τ i, and γi = ∇τ I(τ i+1)−∇τ I(τ i).

4. NUMERICAL EXPERIMENT

In this section, two experiments were performed to confirm the ef-
fectiveness of the proposed method. The proposed method was com-
pared with the convention method using the cubic C2-spline inter-
polation. For the end points which are always the central issue in
EMD [34], mirrored signals were padded at each end of the sig-
nal [35].
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Fig. 2. Estimated envelopes based on the spline interpolation meth-
ods. Each row shows (from top to bottom) results for the conven-
tional cubic C2-spline interpolation, results for the proposed tan-
gentially constrained spline without tangential points optimization,
and results for the proposed method. The right column shows the
enlargement of each figure in the left column.

4.1. Comparison of envelopes

At first, an envelope estimation problem of a simulated signal,

u(t) = (1− 0.6 cos(8πt)) cos(40πt− 2 cos(4πt)) , (24)

t ∈ [0, 1] was considered. The envelopes obtained by the conven-
tional cubic C2-spline interpolation and the proposed method are
shown in Fig. 2. Although the envelopes obtained by the cubic C2-
spline interpolation are smooth (top row), they contain undershoots

as seen in the enlarged figure. Such a few amount of undershoots
greatly affects the results of EMD in the wrong direction. The en-
velopes obtained by the proposed method were tangent at interpola-
tion points as expected (middle row), which confirmed the correct-
ness of the proposed formulation in Sec. 3.1. However, the proposed
spline itself is not so smooth owing to the tangential constraint. The
spline smoothest among the tangentially constrained splines was ob-
tained by the proposed tangential points optimization in Sec. 3.2 as
shown in the bottom row. This result indicates that the proposed
method can estimate a smooth tangential envelope without the un-
dershoot problem.

4.2. Application to EMD

The proposed method was compared with the conventional method
in terms of the results of EMD. EMD was applied to a signal con-
sisting of three components shown in Fig. 3 (a). Results of EMD are
shown in Fig. 3 (b) and (c), where the result obtained by the pro-
posed method is in Fig. 3 (b), and that of the conventional method
is in Fig. 3 (c). EMD based on the conventional method resulted in
four components as shown in Fig. 3(c), which should be the effect
of undershoot of the estimated envelopes. On the other hand, EMD
with the proposed method correctly recovered the original compo-
nents because undershoot is avoided in the proposal.

These results in Figs. 2 and 3 suggest that the envelopes esti-
mated by the proposed method have better characteristics than the
conventional ones. However, similarly to any other envelope esti-
mation methods [2–21], the proposed method also depends on the
condition around the boundary of the signal. That is, the effect from
outside of the observed period can reduce the accuracy of the estima-
tion result. Since the proposed method is based on the optimization,
an optimal boundary condition might be obtained as an extension of
the proposed method. This possibility should be considered in the
future works.

5. CONCLUSION

In this paper, a tangentially constrained spline for estimating en-
velopes without the undershoot problem is proposed. It is a quar-
tic C2-spline constrained by first derivatives at the tangential points
that always satisfy the tangential condition of envelope. A tangen-
tial points optimization method is also proposed so that an optimally
smooth envelope among the proposed splines is obtained. Future
works include considerations of appropriate boundary conditions as
discussed in the experimental section.
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Fig. 3. Results of EMD with different envelope estimation methods. Components of the original signal in (a) were decomposed by EMD
after mixing. (b) and (c) show the results of EMD based on the proposed method and the conventional method, respectively.

4377



6. REFERENCES

[1] Y. Yang, “A signal theoretic approach for envelope analysis
of real-valued signals,” IEEE Access, vol. 5, pp. 5623–5630,
2017.

[2] N. E. Huang, Z. Shen, S. R. Long, M. C. Wu, H. H. Shih,
Q. Zheng, N.-C. Yen, C. C. Tung, and H. H. Liu, “The empiri-
cal mode decomposition and the Hilbert spectrum for nonlinear
and non-stationary time series analysis,” Proc. R. Soc. Lond.
A, vol. 454, no. 1971, pp. 903–995, 1998.

[3] P. Flandrin, G. Rilling, and P. Goncalves, “Empirical mode
decomposition as a filter bank,” IEEE Signal. Proc. Let., vol.
11, no. 2, pp. 112–114, Feb. 2004.

[4] G. Rilling and P. Flandrin, “One or two frequencies? The
empirical mode decomposition answers,” IEEE Trans. Signal
Process., vol. 56, no. 1, pp. 85–95, Jan. 2008.

[5] G. Rilling and P. Flandrin, “Sampling effects on the empirical
mode decomposition,” Adv. Adapt. Data Anal., vol. 01, no. 01,
pp. 43–59, 2009.

[6] Q. Wu and S. D. Riemenschneider, “Boundary extension and
stop criteria for empirical mode decomposition,” Adv. Adapt.
Data Anal., vol. 02, no. 02, pp. 157–169, 2010.

[7] N. E. Huang, M.-L. Wu, W. Qu, S. R. Long, and S. S. P. Shen,
“Applications of Hilbert–Huang transform to non-stationary fi-
nancial time series analysis,” Appl. Stochastic Models Bus.
Ind., vol. 19, no. 3, pp. 245–268, 2003.

[8] A. O. Boudraa and J. C. Cexus, “EMD-based signal filtering,”
IEEE Trans. Instrum. Meas., vol. 56, no. 6, pp. 2196–2202,
Dec. 2007.

[9] N. E. Huang and Z. Wu, “A review on Hilbert–Huang trans-
form: Method and its applications to geophysical studies,” Rev.
Geophys., vol. 46, no. 2, 2008.

[10] V. Bajaj and R. B. Pachori, “Classification of seizure and
nonseizure EEG signals using empirical mode decomposition,”
IEEE Trans. Inf. Technol. Biomed., vol. 16, no. 6, pp. 1135–
1142, Nov. 2012.

[11] Y. Lei, J. Lin, Z. He, and M. J. Zuo, “A review on empirical
mode decomposition in fault diagnosis of rotating machinery,”
Mech. Syst. Sig. Process., vol. 35, no. 1, pp. 108–126, 2013.

[12] T. Tanaka and D. P. Mandic, “Complex empirical mode decom-
position,” IEEE Signal. Proc. Let., vol. 14, no. 2, pp. 101–104,
Feb. 2007.

[13] G. Rilling, P. Flandrin, P. Goncalves, and J. M. Lilly, “Bivariate
empirical mode decomposition,” IEEE Signal. Proc. Let., vol.
14, no. 12, pp. 936–939, Dec. 2007.

[14] N. Rehman and D. P. Mandic, “Multivariate empirical mode
decomposition,” Proc. R. Soc. Lond. A, vol. 466, no. 2117, pp.
1291–1302, 2010.

[15] Z. Wu and N. E. Huang, “Ensemble empirical mode decom-
position: A noise-assisted data analysis method,” Adv. Adapt.
Data Anal., vol. 01, no. 01, pp. 1–41, 2009.

[16] Q. Chen, N. E. Huang, S. D. Riemenschneider, and Y. Xu, “A
B-spline approach for empirical mode decompositions,” Adv.
Comput. Math., vol. 24, no. 1, pp. 171–195, 2006.

[17] Z. Xu, B. Huang, and K. Li, “An alternative envelope approach
for empirical mode decomposition,” Digital Signal Process.,
vol. 20, no. 1, pp. 77–84, 2010.

[18] S. R. Qin and Y. M. Zhong, “A new envelope algorithm of
Hilbert–Huang transform,” Mech. Syst. Sig. Process., vol. 20,
no. 8, pp. 1941–1952, 2006.

[19] L. Yang, Z. Yang, L. Yang, and P. Zhang, “An improved en-
velope algorithm for eliminating undershoots,” Digital Signal
Process., vol. 23, no. 1, pp. 401–411, 2013.

[20] X. Hu, S. Peng, and W. L. Hwang, “EMD revisited: A new
understanding of the envelope and resolving the mode-mixing
problem in AM-FM signals,” IEEE Trans. Signal Process., vol.
60, no. 3, pp. 1075–1086, Mar. 2012.

[21] W. Zhu, H. Zhao, D. Xiang, and X. Chen, “A flattest con-
strained envelope approach for empirical mode decomposi-
tion,” PLoS One, vol. 8, no. 4, pp. 1–12, 2013.

[22] Y. Washizawa, T. Tanaka, D. P. Mandic, and A. Cichocki, “A
flexible method for envelope estimation in empirical mode de-
composition,” in Proc. 10th Int. Conf. Knowl.-Based Intell.
Inf. Eng. Syst.(KES 2006), Bournemouth, UK, 2006, pp. 1248–
1255.

[23] B. Huang and A. Kunoth, “An optimization based empirical
mode decomposition scheme,” J. Comput. Appl. Math., vol.
240, pp. 174–183, 2013.

[24] L. Yang, Z. Yang, F. Zhou, and L. Yang, “A novel envelope
model based on convex constrained optimization,” Digital Sig-
nal Process., vol. 29, pp. 138–146, 2014.

[25] G. Wahba, Spline Models for Observational Data, Society for
Industrial and Applied Mathematics, Philadelphia, PA, 1990.

[26] R. T. Rato, M. D. Ortigueira, and A. G. Batista, “On the HHT,
its problems, and some solutions,” Mech. Syst. Sig. Process.,
vol. 22, no. 6, pp. 1374–1394, 2008.

[27] W. Heß and J. W. Schmidt, “Positive quartic, monotone quintic
C2-spline interpolation in one and two dimensions,” J. Com-
put. Appl. Math., vol. 55, no. 1, pp. 51–67, 1994.

[28] G. Chavent, “Identification of functional parameters in par-
tial differential equations,” in Proc. Jt. Autom. Control Conf.,
Austin, Texas, 1974, pp. 31–48.

[29] R.-E. Plessix, “A review of the adjoint-state method for com-
puting the gradient of a functional with geophysical applica-
tions,” Geophys. J. Int., vol. 167, no. 2, pp. 495–503, 2006.

[30] C. G. Broyden, “The convergence of a class of double-rank
minimization algorithms 1. General considerations,” IMA J.
Appl. Math., vol. 6, no. 1, pp. 76–90, 1970.

[31] R. Fletcher, “A new approach to variable metric algorithms,”
Comput. J., vol. 13, no. 3, pp. 317–322, 1970.

[32] D. Goldfarb, “A family of variable-metric methods derived by
variational means,” Math. Comput., vol. 24, no. 109, pp. 23–
26, 1970.

[33] D. F. Shanno, “Conditioning of quasi-Newton methods for
function minimization,” Math. Comput., vol. 24, no. 111, pp.
647–656, 1970.

[34] N. E. Huang, Hilbert–Huang transform and its applications,
World Scientific, Singapore, 2005.

[35] G. Rilling, P. Flandrin, and P. Goncalves, “On empirical
mode decomposition and its algorithms,” in Proc. IEEE-
EURASIP Workshop Nonlinear Signal Image Process., Grado,
Italy, 2003.

4378


