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ABSTRACT

Currently, WiFi (or IEEE 802.11) enabled infrastructures and
devices have become ubiquitous, which makes it promising to
provide indoor positioning services via WiFi signals. Howev-
er, most existing studies on its performance are carried out
based on simulations and experiments, and it is still chal-
lenging to mathematically characterize the localization error.
Therefore, in this paper, the Cramer-Rao lower bound (CRL-
B) for the localization error by using WiFi signals is estab-
lished and enables us to carry out a theoretical analysis on the
fundamentals of WiFi based localization. Extensive experi-
ments based on the well-known WiFi fingerprint-based local-
ization are then carried out and confirm the correctness of the
proposed CRLB model as well as the analysis.

Index Terms— WiFi, CRLB, Localization, Performance
analysis

1. INTRODUCTION

Since location information plays a vital role in both indoor
and outdoor applications, great efforts have been devoted to
developing various localization techniques [1, 2]. Since GPS
cannot be applied in indoor environments [3], it is promising
to develop indoor positioning services based on widely avail-
able WiFi infrastructures. Thus, various indoor positioning
and navigation techniques have been presented [4, 5].

Due to its simplicity and tolerance to pervasive multipath
effects in indoor environments, the WiFi fingerprint-based
method [6–8] has gained most attention in both academia and
industries. Basically, the fingerprint-based method involves
two steps. In the first step, a radio map consisting of a num-
ber of fingerprints labelled with respective reference points
(i.e. predefine locations) within a service space is constructed
via an offline site survey [9, 10]. In the second step, when a
device sends an online location query containing its current
received signal strength (RSS) from multiple APs, its location
can be inferred according to the existing radio map [11, 12].
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However, due to the complexity in the indoor propagation
of WiFi signals, it is really challenging to characterize the
performance of the WiFi based localization techniques. Most
studies on the localization performance are based on experi-
ments and simulations. In [13], a preliminary analytical mod-
el was developed for a localization system instance with sim-
plified assumptions on the signal propagation and system de-
sign. In [14], a comparative study on indoor localization was
reported with experiments, and the results are highly depen-
dent on the environment and device implementation. In [15],
a general but complicated probabilistic model was presented
to assist in the performance analysis and further helps to de-
sign an optimal fingerprint reporting strategy. However, all
the above studies cannot directly answer how the WiFi based
localization error is affected by various factors.

In this paper, we deal with the performance of a general
WiFi based localization problem and formulate the Cramer-
Rao lower bound (CRLB) to characterize the resulting local-
ization error. It is shown that the CRLB is inversely propor-
tional to the number of RSS measurements from WiFi access
points (APs). Moreover, the RSS measurements from differ-
ent APs contribute diversely to localization according to their
corresponding RSS gradients around the true location. Then,
extensive experiments are conducted and a performance anal-
ysis confirms the correctness of the CRLB model.

2. FUNDAMENTALS OF WIFI BASED
LOCALIZATION

Throughout this paper, we shall use the following mathemat-
ical notations: (·)T denotes transpose of a matrix or a vector;
Tr(·) denotes the trace of a square matrix.

2.1. A Generic Localization Model

As was commonly assumed in the literature [15], the RSS
measurements of the signals propagated from n APs to a re-
ceiver at a position x, denoted y = [y1, y2, · · · , yn]T , are
independent and identically distributed, namely

y ∼ N(m(x), σ2In), (1)

where m(x) = [m1(x),m2(x), · · · ,mn(x)]T is a vector
function containing the functions of mean RSS measurements
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at the position x = [x1, x2]T from the n APs.
The localization problem aims to infer the unknown posi-

tion x given the corresponding vector of RSS measurements,
i.e. y. Suppose that the RSS measurement model in (1) is
known, and the localization problem can be solved through,
e.g. the maximum likelihood estimator (MLE).

Define gradients ri = ∂mi(x)
x = [ri1, ri2] and formulate

r = [rT1 , r
T
2 , · · · , rTn ]T . The likelihood function is

L(y;x) = log p(y|x), (2)

and the Fisher information matrix (FIM) is

F(x) = −E

(
∂2L(y;x)

∂x∂xT

)
=

1

σ2
rT r. (3)

The inverse of the FIM, namely the Cramer-Rao lower
bound (CRLB), is formulated as [16–18]

F−1(x) = σ2

[
n∑

i=1

(
r2i1 ri1ri2
ri1ri2 r2i2

)]−1

=

σ2
∑n

i=1

(
r2i2 −ri1ri2
−ri1ri2 r2i1

)
∑n

i=1 r
2
i1

∑n
i=1 r

2
i2 − (

∑n
i=1 ri1ri2)2

The mean squared error is defined as follows

Tr(F−1(x)) =
σ2
∑n

i=1(r2i1 + r2i2)∑n
i=1 r

2
i1

∑n
i=1 r

2
i2 − (

∑n
i=1 ri1ri2)2

=
2σ2

∑n
i=1 ‖ri‖2∑n

i=1

∑n
j=1(‖ri‖‖rj‖ sin θij)2

,

=
2σ2∑n

i=1

(
‖ri‖2∑n

k=1 ‖rk‖2
∑n

j=1 h
2
ij

)
=

2σ2

n
∑n

i=1

(
‖ri‖2∑n

k=1 ‖rk‖2
h̄2i

)
=

2σ2

nh̄2w
, (4)

where θij denotes the angle subtended by ri and rj

hij = ‖rj‖ sin θij , (5)

h̄i =

√√√√ 1

n

n∑
j=1

h2ij , (6)

h̄w =

√√√√ n∑
i=1

(
‖ri‖2∑n

k=1 ‖rk‖2
h̄2i

)
. (7)

In Fig. 1, the gradients ri and rj are illustrated by vectors,
and hij denotes the distance from one vertex of the vector ri
to another vector rj . As such, h̄2i with i = 1, · · · , n actual-
ly represents the average squared distance associated with the
gradient ri and all the other gradients rj with j = 1, · · · , n.
Likewise, h̄2w represents the weighted average squared dis-
tance h̄i among the gradients ri with i = 1, · · · , n.

Fig. 1. The illustration of hij associated with the gradients ri
and rj .

2.2. Performance Analysis

According to (4), it can be straightforwardly concluded that:
(a) the localization error scales with the magnitude of the
noises in the RSS measurements, namely σ2; (b) the local-
ization error is inversely proportional to the number of RSS
measurements, namely n; (c) the localization error inversely
proportional to h2w, which is a complicated variable depend-
ing on all the gradients ri with i = 1, · · · , n.

In light of the formulation of h̄2w, its value is mainly deter-
mined by two factors: the magnitudes of the gradients ri with
i = 1, · · · , n and the angles subtended by each pair of the cor-
responding vectors. Therefore, an analysis shall be presented
based on these two factors.

Firstly, the magnitude of the gradient ri reflects the spa-
tial variation of (mean) RSS measurements when signals are
emitted from the corresponding AP, implying that: (a) in gen-
eral, the larger are the variations, the larger is the weighted
average squared distance h̄2w, the less is the CRLB, name-
ly that good performance can be obtained for those positions
with large gradients, and vice versa; (b) if the magnitude as-
sociated with one AP is trivial, the contribution of this AP
to localization can be neglected on account of the resulting
trivial weight in calculating h̄2w, such that the number of AP-
s used in localization as well as the size of the correspond-
ing radio map can be significantly reduced by removing those
with trivial weights; (c) specifically, in the most commonly
adopted WiFi fingerprint-based approach, an offline site sur-
vey must be conducted to build a radio map (or a fingerprint
database), which factually provides rough information about
the gradients so as to evaluate (4); as a result, the efficiency
of fingerprint-based localization systems can be improved to
some extent (this will be elaborated in the next section).

Secondly, since sin θij is employed in (4), it can be con-
cluded that: (a) when the gradients are collinear, the denom-
inator of (4) will equal to zero, such that the CRLB does not
exist, meaning that the localization performance is severely
degraded in this case; (b) on the contrary, the CRLB can be
minimized provided that two APs are used and their gradients
are orthogonal to each other.

Thirdly, (5), (6) and (7) reveal that h̄i is averaged over
n and h̄w is the weighted average value of h̄i with i =
1, 2, · · · , n, implying that h̄w is nearly independent of n
especially when n is sufficiently large. Hence, supposing

4370



that h̄w keeps constant when n is above a threshold, say
Nth, it follows from (4) that continuously increasing n above
Nth can reduce the CRLB by only less than 100/(Nth + 1)
percents, indicating that having more than APs Nth hardly
contributes to localization accuracy.

In summary, considering the difficulties in predicting in-
door propagations of WiFi signals due to multipath effects,
it is hard or even impossible to exactly determine the gradi-
ents of mean RSS measurements, so that optimizing the WiFi
based localization performance by using (4), though is attrac-
tive, turns out to be challenging.

3. EXPERIMENTS

3.1. Setup

In the experiments, practical RSS measurements are firstly
collected in our lab, which is Room 316 in the Building of
College of Computer Science. Specifically, the 65 points on
the 13×5 lattice with the side length of 1 m are chosen as ref-
erence positions and another 15 random positions are chosen
as part of the testing positions; at each reference or testing
position, a smartphone (Redmi Note) is placed on a 1.5 m
high tripod to scan WiFi APs in 5 minutes. Consequently, at
each reference position, 200 RSS sample vectors are random
selected and their average vector is used as the fingerprint;
54 testing positions, including 39 reference positions and 15
random testing positions, are used for testing purposes, and
100 RSS sample vectors are selected as testing samples. The
smartphone at each position might detect a different number
of WiFi APs, ranging between 31 to 64, and thus the elemen-
t in a RSS sample vector will be set to be −100 dBm if the
corresponding AP cannot be detected.

To validate (4), we need to obtain the gradients at the test-
ing positions. Hence, the gradient at one position is approxi-
mated by using its nearest five neighboring positions and the
multiple linear regression function regress in Matlab.

The WiFi fingerprint-based localization adopts the nearest
neighbour (NN) method as well as the k nearest neighbours
(kNN) with different choices of k to determine the final loca-
tion estimate, which is realized in Matlab.

3.2. Performance Comparison

Firstly, the relationship between the localization error and the
number of APs is considered for validation. To do so, differ-
ent dimensions of the fingerprints are emulated by virtually
removing certain APs, and accordingly, the elements corre-
sponding to those removed APs will be deleted from both fin-
gerprints and testing RSS sample vectors. Specifically, the
dimension is varied from 3 to 24 with the step size of 3, and
given a specific number of APs, 50 different combinations of
APs are generated for localization.

The CRLB and final localization errors obtained by NN
and kNN with k = 3, 6 and averaged over the 50 combina-
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Fig. 2. The localization errors on different number of APs
under the CRLB and the fingerprint-based approach.

tions are depicted in Fig. 2. As can be seen, with increasing
the number of APs, both the CRLB and the practical local-
ization errors are decreasing, but the decreasing rates become
slow, which is consistent with (4).

Secondly, the relationship between the localization error
and the RSS gradient is considered for validation. By letting
the number of APs used for localization be 9, we randomly
choose 50 combinations of APs again. At each testing posi-
tion, one testing RSS sample vector is randomly selected and
its average RSS gradient of the corresponding 9 RSS gradi-
ents from 9 APs is calculated for use. In Fig. 3, the localiza-
tion error and CRLB against its corresponding average RSS
gradient is plotted with respect to NN and kNN with k = 3, 6.
For clear of illustration, each subfigure in Fig. 3 only depict-
s the results of 4 testing positions. As can be seen, in most
cases, the CRLB associated with any one testing position dis-
plays an obvious descending trend, whereas the localization
error in most cases appears to decrease with the correspond-
ing average RSS gradient increasing. This observation con-
firms that there does exist the relationship between the local-
ization performance and RSS gradients, which can be utilized
in practical localization, say to select optimal AP for localiza-
tion.

4. CONCLUSIONS

This paper presented a theoretical analysis on the perfor-
mance of WiFi based localization through the CRLB which
is widely adopted in the literature. The CRLB revealed that
the localization performance is dependent on the number of
APs and the RSS gradients. Then, the experiments were con-
ducted based on WiFi fingerprint-based localization in a real
environment and validated the theoretical analysis. This s-
tudy not only provides valuable insight into the fundamentals
of WiFi based localization, but also provides useful design
guidelines for practical applications.
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(a) The CRLB vs. the localization error using NN.
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(b) The CRLB vs. the localization error using kNN with k = 3.
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(c) The CRLB vs. the localization error using kNN with k = 6.

Fig. 3. The impact of RSS gradients on the localization error under. The dot denotes the CRLB and the plus denotes the
localization error.
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