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ABSTRACT

Uncertainty principles in finite dimensional vector space have
been studied extensively, however they cannot be applied to
sparse representation of rational functions. This paper con-
siders the sparse representation for a rational function under
a pair of orthonormal rational function bases. We prove the
uncertainty principle concerning pairs of compressible rep-
resentation of rational functions in the infinite dimensional
function space. The uniqueness of compressible representa-
tion using such pairs is provided as a direct consequence of
uncertainty principle.

Index Terms— uncertainty principle, rational function-
s, orthonormal rational function basis, infinite dimensional
function space, sparse representation

1. INTRODUCTION

Uncertainty principles generally express the impossibility for
a function (or a vector in the discrete case) to be simultaneous-
ly sharply concentrated in two different representations, pro-
vided the latter are incoherent enough [1]. Its first statement in
quantum mechanics was the so-called Robertson-Schrödinger
inequality, which established a lower bound for the produc-
t of variances of any two self-adjoint operators on a generic
Hilbert space. For various purposes, many such settings using
different measures of “concentration” have been proposed in
the literature. For example, the uncertainty principles in the
setting of discrete sequences, continuous and discrete-time
functions for L2 and L1 measures were presented in [2]. Un-
certainty principles on the unit sphere have been established
in [3]. A very general uncertainty principle for operators on
Banach spaces was given in [4] and, in more abstract settings,
on compact Riemannian manifolds [5]. The uncertainty prin-
ciple from an information theory point of view was discussed
in [6] and bounds for the entropic uncertainty principle are
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derived in [7], using entropies as concentration measures. [8]
provided a fundamental tradeoff between a signal’s localiza-
tion on a graph and in its spectral domain.

The uncertainty principle has encountered many parallel
evolutions and generalizations in different domains. Heisen-
berg’s celebrated uncertainty principle, as a cornerstone of
developments in signal processing, can be generalized in in-
equality ∆2

t∆
2
ω ≥ 1

4 , in which ∆2
t and ∆2

ω measure the “time
spread” and “frequency spread”, which provides a tradeoff
between signal localization in time and frequency, i.e. a signal
cannot be concentrated in both time and frequency. The anal-
ogous results for discrete-time signals were given in [9, 10]
as well. A complete account of classical uncertainty relations
focused on time-frequency uncertainty can be found in [11].

In the field of signal and systems, the uncertainty principle
in the discrete setting has gained increasing attention recent-
ly due to its connection with sparse representation and com-
pressive sensing [1]. In [12], Donoho and Huo discussed the
signal represented by a highly sparse superposition of atoms
from time-frequency dictionary [Φ Ψ], where Φ and Ψ are the
spike basis and the Fourier basis, respectively. If a signal S is
expressed in each basis respectively

S =
n∑
i=1

αiϕi =
n∑
i=1

βiψi,

then ∥α∥0+∥β∥0 ≥ 1+M−1,whereα := [α1, α2, · · · , αn]T ,
β := [β1, β2, · · · , βn]T and M = sup

1≤i,j≤n
|⟨ϕi, ψj⟩| is the

mutual coherence of the two bases. The mutual coherence
measures how different two representations are. The more d-
ifferent the representations, the more constraining the bounds.

The direct consequence of uncertainty principle is the u-
niqueness of sparse representation of the signal S in pair of
such two bases [Φ Ψ] if the representation coefficient γ satis-
fies ∥γ∥0 < 1

2 (1 +
1
M ). And the solution can be obtained by

minimizing the 1-norm of the coefficients among all decom-
positions. Elad and Bruckstein extended the result in [12]
to arbitrary orthonormal bases and presented an “improved”
uncertainty principle with better bounds ∥γ∥0 < 1

M yield-
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ing uniqueness of the sparse representation in [13]. Further
studied in, e.g. [14, 15], the uncertainty principles led to the
uniqueness of the sparse solution and laid the foundation for
sparse signal recovery from partial measurements.

The key idea of uncertainty principle in finite dimensional
settings is that if two orthonormal bases are mutually incoher-
ent, no nonzero signal can have a sparse representation in both
bases simultaneously. As analyzed in [13] and [16], the basic
uncertainty principle concerning pairs of representations of
finite dimensional vectors in different orthonormal bases has
a direct impact on the uniqueness property of the sparse rep-
resentation of such vectors using pairs of orthonormal bases
as overcomplete dictionaries. Hence the uncertainty principle
and uniqueness are fundamentally instrumental to the sparse
representation of signals under the pairs of orthonormal bases.

It should be noted that uncertainty principle in finite di-
mensional vector space cannot work for the sparse represen-
tation and reconstruction of rational functions which have in-
finite impulse response. In this paper, we establish analogous
uncertainty principles for rational functions represented by
orthonormal rational function (ORF) basis, which is a new
version for infinite dimensional function space. Orthonor-
mal rational functions have been widely studied over the last
twenty years, since the rationality improves efficiency of the
representation of linear systems, and orthonormality leads to
a great simplification of the analysis and synthesis involved
in using the basis functions, see for instance [17–24]. On the
basis of the uncertainty principle for rational function, we in-
vestigate the sparse representation of a rational function under
a pair of ORF bases.

The contributions of this paper are: the proposal of a new
definition of sparsity for infinite sequence, and establishmen-
t of the uncertainty principle and uniqueness of sparse rep-
resentation for rational transfer functions, using the uniform
bound of maximal absolute inner product of the pair of the
ORFs as an index, which extends the results of [13] to infinite
dimensional function space and compressible representation.

The rest of this paper is organized as follows. In Sec-
tion II, the uncertainty principle for sparse representation of
rational functions is given. The uniqueness of the represen-
tation of rational functions using two ORF bases is presented
in Section III. Section IV concludes the paper and discusses
the future work. Given the space limitations, we only give the
proof outlines of the theorems, see [25] for the proofs in the
full version.

2. UNCERTAINTY PRINCIPLE FOR SPARSE
REPRESENTATION OF RATIONAL FUNCTIONS

Rational functions, which are widely used in signal process-
ing and control to model both signals and dynamic systems,
can be put in a Hilbert space framework. The Hardy spaceH2

is a Hilbert space with the inner product between two rational
functions F (z) and G(z) defined as

⟨F (z), G(z)⟩= 1

2πi

∮
T
F (z)G(z)

dz

z
=

1

2π

∫ 2π

0

F (eiω)G(eiω)dω,

(1)
where T = {z| |z| = 1}.

Given a rational function H(z) ∈ H2, it has a unique rep-
resentation in every ORF basis of this space. If {ϕk(z)}∞k=1 is
an ORF basis, then we have H(z) =

∑∞
k=1 αkϕk(z), where

αk = ⟨H(z), ϕk(z)⟩.
Suppose we have two different ORF bases {ϕk(z)}∞k=1,

{ψl(z)}∞l=1. Then every rational function H(z) has a unique
representation under the two bases, respectively, denoted as

H(z) =

∞∑
k=1

αkϕk(z) =

∞∑
l=1

βlψl(z). (2)

Obviously, if H(z) has a stable pole, then the representation
of H(z) using impulse response is infinite, which requires a
large number of sampling data to guarantee the approximation
performance. While if the pole of the selected rational bases
is exactly the same as that of H(z), then the representation
will be much shorter. A natural idea is to get a much sparser
representation of H(z) in a joint, overcomplete set of ORF
bases, say

{Φ(z),Ψ(z)} = {ϕ1(z), ϕ2(z), · · · , ψ1(z), ψ2(z), · · · }.

Notice that rational functions have infinite impulse coeffi-
cients, the sparsity defined in [13] is no longer applicable. We
first present a new definition of sparsity, called ε-sparsity and
then establish the uncertainty principle for rational function-
s that leads to the bound yielding uniqueness for the sparse
representation of rational function in pairs of ORF bases.

Definition 1. For a fixed threshold ε > 0 and an infinite se-
quence α = [α1, α2, · · · ]T in l1, i.e. ∥α∥1 =

∑∞
k=1 |αk| <

∞. Let

Nε(α) = min{K :

∞∑
k=K

|αk| ≤ ε}.

The ε-support of α is defined as

Γε(α) = {k : |αk| ̸= 0, 1 ≤ k < Nε(α)},

and the cardinality of Γε(α) as the ε-0 norm of α, denoted by
∥α∥0(ε).

Remark 1. α in l1 guarantees the existence of Nε(α). If
ε = 0, then ε-support Γε(α) for α is the support of α in the
general sense, i.e. {k : |αk| ̸= 0}.

Definition 2. For a given positive integer s, the coefficient α
is (ε, s)-sparse in the sense of ε-0 norm if ∥α∥0(ε) ≤ s. For
brevity, we call the coefficient α ε-sparse if the value of s is
not concerned.
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Definition 3. A rational function is (ε, s)-sparse if the repre-
sentation coefficient under an ORF basis is (ε, s)-sparse.

If ε = 0, then ∥α∥0(ε) = ∥α∥0, which is the number of
nonzeros in α, and the (ε, s)-sparsity becomes the s-sparsity
in compressed sensing. However it should be noted that for
a rational function with poles away from zero, its impulse
response is usually infinite and cannot be (0, s)-sparse cor-
responding to ε = 0, which shows that the definition of the
sparsity in traditional compressed sensing is not applicable
to the sparsity of the rational function. Hence the uncertain-
ty principle discussed in the sparse representation in dictio-
naries cannot apply for the sparse representation of rational
functions. In the following, based on the (ε, s)-sparsity, we
present the uncertainty principle for the representation of ra-
tional functions under two ORF bases.

Theorem 1. (Uncertainty Principle) Let H(z) ∈ H2 be a
rational function that can be represented in (2). For a fixed
threshold ε, ∥α∥0(ε) and ∥β∥0(ε) are the ε-0 norm of α and β,
respectively, then for all such pairs of representation we have(√

∥α∥0(ε) + ε
)2

+
(√

∥β∥0(ε) + ε
)2

≥ 2

µ
,

where
µ = sup

k,l
|⟨ϕk(z), ψl(z)⟩|

and ⟨ϕk(z), ψl(z)⟩ is the inner product of ϕk(z) and ψl(z)
defined in (1). Following the terminology of compressed
sensing, we call µ the mutual coherence of two ORF bases
{ϕk(z)} and {ψl(z)}.

Proof outline of Theorem 1. Notice that the transfer function
considered is in H2 space satisfying

H(z) =

∞∑
k=1

αkϕk(z) =

∞∑
l=1

βlψl(z).

For {αk} and {βl}, denote Γε(α) and Γε(β) as the ε-support
of α and β, respectively. Then we have

∑
k/∈Γε(α)

|αk| ≤ ε

and
∑
l/∈Γε(β)

|βl| ≤ ε.
Without loss of generality, we assume ⟨H(z),H(z)⟩ = 1.

Note that

1 = |⟨H(z),H(z)⟩|

= |⟨
∞∑
k=1

αkϕk(z),
∞∑
l=1

βlψl(z)⟩|

= |
∞∑
k=1

∞∑
l=1

αk⟨ϕk(z), ψl(z)⟩β̄l|

≤ µ
∞∑
k=1

∞∑
l=1

|αk||βl|

≤ µ(
∑

k∈Γε(α)

|αk|+ ε)(
∑

l∈Γε(β)

|βl|+ ε).

Similarly, we have

1 = ⟨H(z),H(z)⟩

=

∞∑
k=1

∞∑
l=1

αk⟨ϕk(z), ϕl(z)⟩ᾱl

=
∞∑
k=1

|αk|2 =
∑

k∈Γε(α)

|αk|2 +
∑

k/∈Γε(α)

|αk|2

≤
∑

k∈Γε(α)

|αk|2 +
∑

k/∈Γε(α)

|αk|ε ≤
∑

k∈Γε(α)

|αk|2 + ε2

and

1 =
∑

l∈Γε(β)

|βl|2 +
∑

l/∈Γε(β)

|βl|2 ≤
∑

l∈Γε(β)

|βl|2 + ε2.

The bound of the above expression can be solved by the opti-
mization problem

max
αk,βl

(
∑

k∈Γε(α)

|αk|+ ε)(
∑

l∈Γε(β)

|βl|+ ε) (3)

s.t. |αk| > 0, |βl| > 0,∑
k∈Γε(α)

|αk|2 ≥ 1− ε2,
∑

l∈Γε(β)

|βl|2 ≥ 1− ε2.

This can be separated into two optimization problems:

max
αk

∑
k∈Γε(α)

|αk| s.t. |αk| > 0,
∑

k∈Γε(α)

|αk|2 ≥ 1− ε2 (4)

max
βl

∑
l∈Γε(β)

|βl| s.t. |βl| > 0,
∑

l∈Γε(β)

|βl|2 ≥ 1− ε2. (5)

The optimization (4) can be solved by

max
αk

∑
k∈Γε(α)

|αk| s.t. |αk| > 0,
∑

k∈Γε(α)

|αk|2 = C, (6)

where C ∈ [1− ε2, 1] is a constant.
By using Lagrangian multiplier method, we have La-

grangian function

F (|αk|, λ) =
∑

k∈Γε(α)

|αk|+ λ(
∑

k∈Γε(α)

|αk|2 − C).

Let the partial differentiation

∂F (|αk|, λ)
∂|αk|

= 1 + 2λ|αk| = 0.

Then we have all the |αk| are equal when k ∈ Γε(α).
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Denote ∥α∥0(ε) = A. Then |αk| =
√

C
A . Hence the maxima

of (6) is A
√

C
A =

√
AC. Since C ∈ [1 − ε2, 1], then the

maxima of (4) is
√
A =

√
∥α∥0(ε).

Similarly, the maxima of (5) is
√
∥β∥0(ε). Therefore, the

maxima of (3) is (
√
∥α∥0(ε) + ε) · (

√
∥β∥0(ε) + ε), and

1 ≤ µ

 ∑
k∈Γε(α)

|αk|+ ε

 ∑
l∈Γε(β)

|βl|+ ε


≤ µ

(√
∥α∥0(ε) + ε

)
·
(√

∥β∥0(ε) + ε
)
.

Using the inequality between the geometric and arithmetic
means, we have

1 ≤ µ

(√
∥α∥0(ε) + ε

)2
+
(√

∥β∥0(ε) + ε
)2

2
.

That is (√
∥α∥0(ε) + ε

)2

+
(√

∥β∥0(ε) + ε
)2

≥ 2

µ
.

2

3. UNIQUENESS FOR SPARSE REPRESENTATION
OF RATIONAL FUNCTIONS USING TWO ORF

BASES

Uncertainty principle reveals that in the perspective of ε-0
norm, a rational functionH(z) having a sparse representation
in the joint set of two ORF bases will have highly nonsparse
representation in either of these bases alone. And the uncer-
tainty principle directly determines the bound which guaran-
tees the uniqueness of the sparse representation. Before we
present the uniqueness of the sparse representation, we give
the definition for the sparse representation in pairs of ORF
bases.

Definition 4. For a rational functionH(z) represented under
a pair of orthonormal rational function bases {ϕk(z)} and
{ψl(z)} as

H(z) =
∞∑
k=1

θϕkϕk(z) +
∞∑
l=1

θψl ψl(z), (7)

denote θ1 = [θϕ1 , θ
ϕ
2 , · · · ]T and θ2 = [θψ1 , θ

ψ
2 , · · · ]T , respec-

tively. H(z) is called (ε, s)-sparse if ∥θ1∥0(ε)+∥θ2∥0(ε) ≤ s.

Theorem 2. (Uniqueness) For ε > 0, assume H(z) is (ε, s)-
sparse under a pair of ORF bases {ϕk(z)} and {ψl(z)}. Then
the representation (7) is unique if(√

∥θ1∥0(ε) + ε
)2

+
(√

∥θ2∥0(ε) + ε
)2

<
1

µ
,

where θ1 and θ2 are as defined in Definition 4.

Proof outline of Theorem 2. Suppose there are two different
sparse representations of transfer function H(z), that is

H(z) =

∞∑
k=1

θϕkϕk(z) +

∞∑
l=1

θψk ψl(z)

=
∞∑
k=1

ξϕkϕk(z) +
∞∑
l=1

ξψl ψl(z)

and (√
∥θ1∥0(ε) + ε

)2

+
(√

∥θ2∥0(ε) + ε
)2

<
1

µ
,

(√
∥ξ1∥0(ε) + ε

)2

+
(√

∥ξ2∥0(ε) + ε
)2

<
1

µ
,

where ξ1 = [ξϕ1 , ξ
ϕ
2 , · · · ]T and ξ2 = [ξψ1 , ξ

ψ
2 , · · · ]T . Then

∞∑
k=1

(θϕk − ξϕk )ϕk(z) =
∞∑
l=1

(ξψl − θψl )ψl(z).

According to the uncertainty principle, we have(√
∥θ1 − ξ1∥0(ε)+ε

)2

+
(√

∥θ2 − ξ2∥0(ε)+ε
)2

≥ 2

µ
. (8)

However, based on the sparsity assumption of Theorem 2(√
∥θ1 − ξ1∥0(ε) + ε

)2

+
(√

∥θ2 − ξ2∥0(ε) + ε
)2

<
(√

∥θ1∥0(ε) + ε
)2

+
(√

∥ξ1∥0(ε) + ε
)2

+
(√

∥θ2∥0(ε)+ε
)2

+
(√

∥ξ2∥0(ε)+ε
)2

<
2

µ
,

which contradicts (8). 2

Remark 2. Theorems 2 shows that there cannot be two
different θT = [θT1 θT2 ] obeying (

√
∥θ1∥0(ε) + ε)

2
+

(
√
∥θ2∥0(ε) + ε)

2
< 1

µ that represent the same rational
function. And if ε = 0 and the sequence is finite, then the
results of Theorems 1 and 2 are parallel to the results of [13].

4. CONCLUSION

A novel uncertainty principle for sparse representation of ra-
tional functions in infinite dimensional function space is pre-
sented in this paper. The bound which guarantees the unique-
ness of the sparse representation is presented using mutual
coherence as a measure. Since rational functions are widely
used to model both signals and dynamic systems, the conse-
quence in this paper can be applicable to sparse representation
of signal and systems using pairs of ORF bases.
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