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ABSTRACT and its first derivative. Considering the input may be a multi

In this paper, we propose an adaptive STFT (ASTFT) withFcomponent signal, there would be multiple chirp rates at the
adaptive chirp-modulated Gaussian window. The window i$ame time instants. And it follows that some components may
obtained from rotating Gaussian function in time-frequenc have different values of optimal FRFT angles and variances
plane by fractional Fourier transform (FRFT). Itis complgt ~ at the same time instants. Accordingly, a chirp-modulated
adaptive where the two parameters, FRFT rotation angle arffdaussian window with time-frequency-varying FRFT angle

Gaussian variance, are signal-dependent. The angle depéld variance is developed.

dents on the chirp rate of the signal. The variance is deter- 1heidea of rotating window function in the time-frequency
mined by the chirp rate and its first derivative. Considering?lane can be applied to other kinds of TFRs and other kinds
the input may be multicomponent, a chirp-modulated Gausof window functions. Here, we adopt the STFT with Gaus-

sian window with time-frequency-varying angle and varianc sian window function because the STFT is a linear TFR

is developed. The proposed ASTFT has very high energy coif¥ith additivity and reversibility properties. Besideseth is

centration and less interference between componentssenoi & closed-form expression for the chirp-modulated Gaussian
less and noisy environments. function and a closed-form solution to its optimal variance

o ) The chirp-modulated Gaussian window (chirplet) has
_ Index Terms— Adaptive time-frequency analysis, short- oo ysed in the TFR based on concentration measure [3] and
tlme.Fourler transjorm, concentration measure, fractlonaﬂ:RS based on atomic decomposition [7,9]. However, their
Fourier transform, instantaneous frequency. computational complexity is considerable because the’s
closed-form solutions to their optimization problems. Be-
1. INTRODUCTION sides, their adaptive approaches are less robust to noise.
dHighly noisy environment may yield high energy concentra-

No single time-fr ncy representation (TFR) with fixed,. 2" . A .
0 single time-frequency representation ( ) wit edtlon in the noise part instead of the signal part.

values of parameters can be the universal choice for alkkin
of signals. In order to achieve high energy concentration

for a variety of signals, adaptive (signal-dependent) TFRs 2. PRELIMINARY
are attracting more attentions in recent years. A comprean linear TER can be expressed as
hensive introduction of adaptive TFRs has been provided -

in [1,2]. When designing an adaptive TFR, the choice of TER,(t, f) = / o (T)h*(t —1)e > dr, (1)
the type of TFR and the design of adaptive approach are the

two core concerns. Concentration measure [3-6], adaptive

parametric time-frequency analysis based on atomic decomWherEh(T) is the window function. To design an adaptive

" . . window function for the STFT, one popular approach is based
position [7-9] and adapu_ve kernel based on chirp rate [3p-1 on the chirp rate, i.e. first derivative of the instantanefoers
are some popular adaptive approaches.

In [13], an adaptive STET (ASTFT) based on chirp rateduency. In [11], the adaptive window function is time-vanyi
was proposed. The ASTFT uses Gaussian window function 1
with window width (i.e. variance) dependent on the input sig o) (1) = m
nal. In this paper, we further improve the energy concentra-
tion of the ASTFT by using chirp-modulated Gaussian win-when ¢2(t) = o2 is fixed, it reduces to the conventional
dow instead, which is obtained from rotating the GaussiasTFT. In (2),02(¢) is determined by the chirp ra
window (with variance) in time-frequency plane by the frac-
tional Fourier transform (FRFT) [14, 15] (with rotation deg
6). Itis completely adaptive, where its two paramefeend
0 are signal-dependent. The optimal FRFT angle depends on
the slope of the instantaneous frequency, i.e. chirp raitago  However, this ASTFT is not completely adaptive because the
signal. The optimal variance is determined by the chirp rat¢hreshold¢ is user-defined, and the estimation of the instan-
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taneous frequenclins(t) is not signal-dependent. Plus, there wsarb w=a+b
is no proof that (3) is optimal in some sense. 1
In [13], a more powerful ASTFT is developed using the P13 oo arctant
following window function: 1
) ] . ] p<m f<-arctan@ )
—— = Tz’ p>— =0
ha(t,f) (T) 27‘(0’2(157 f)e ) (4) |a] - -

o . @ (b)
whereo?(t, f) is time-frequency-varying because there may,_. . . .
be multiple different chirp rates at the same time instant fo Fig. 1. The straight line shows the instantaneous frequency of

. ; A . the input signal. The ellipses are the 3 dB contour plotsef th
multicomponent signals. The optimal valuesf(t, f) is - ) o .
P 9 P ) WVDs of (a) Gaussian windows with different variances and

) 1 (b) chirp-modulated Gaussian windows with same variance
o (t, f) = 2| fiat, N () but different FRFT angles.
7| inst\®s )

where finst(t, f) is the instantaneous frequencies. If the in-First, consider the simplest case thdt) is a linear FM sig-
put is a monocomponent linear FM signal, then the relatiomal, say,z(t) = exp (j(%t® + bt)). Then, the variance and
reduces intar?(t) = 1/ (27 | fi,(t)]). This relation is more FRFT angle don't need to change over time, it) = p
concise and more accurate than that in (3). Besides, an adagnd9(t) = 6. The WVD of z(t) is a straight line in the
tive low-complexity algorithm was proposed in [13] for in- time-frequency plane, as illustrated in Fig. 1. The WVD of

stantaneous frequency estimation. the original Gaussian window (i.@. = 0) is a 2D Gaussian
function with shape depending on the variapcén Fig. 1(a),
3. ASTFT WITH CHIRP-MODULATED GAUSSIAN the ellipses represent the 3 dB contour plots of the 2D Gaus-
WINDOW sian functions with differenp. The squared magnitude of

) ) . .. the ASTFT can be interpreted as the 2D convolution of the

The time-frequency resolution of the ASTFT in [13] is still \yn/pg of z(t) andh,, o (t), i.e. the straight line blurred by the
limited by the Heisenberg uncertainty principle. To solve;n Gayssian function. Accordingly, one needs to find the op-
this problem, we replace the Gaussian window by Chirpgima| variance (shape) such that the blurring effect is midi
modulated Gaussian window. In [13], it has been derived that the optimal solution degend
on the chirp rate and js= 1/ |a| in this example.

Next, consider the chirp-modulated Gaussian window
FRFT [14, 16] can produce a rotation in the time-frequency?,.¢(t). The ellipses in Fig. 1(b) shows the 3 dB contour

plane. The FRFT with rotation angle 0 is defined as plots of the WVDs ofh, 4(t) with the same variance but
different rotation angleg. It is obvious that the optimal

1T—jcoth eos _ e depends on the chirp rate andds= — arctan(a) in this
wo(u) =\ ——5—e " / e e OuTITT g (t)dt.  example. Comparing Fig. 1(b) with Fig. 1(a), the chirp-

oo modulated Gaussian window yields less blurring effect than
the original Gaussian window if the variance is large enough

3.1. Chirp-Modulated Gaussian Function

Consider a Gaussian function with variangedenoted by
g,(t). Performing the FRFT to rotatg,(¢) clockwise in the _ _ _
time-frequency plane with ange we havey,, ¢(u). Normal- ~ 3.3. Optimal Time-Varying FRFT Angle

izin leads to the chirp-modulated Gaussian function: .
1zng 9.0 (1) P . ussIan Tuneton - nsider a more general form thatt) = A(t) exp (jp(t)).

_1pQteot®0) 2 1 cot0(p?—1) 2 The instantaneous frequency and the chirp rateatgt) =
hpo(u) = coe 2 1heteoto T e T2 oo T (6) /(1) andwl o (t) = ¢ (t), respectively. The signal in Fig. 1
haswinst(t) = at 4+ b andw]4(t) = a, and the optimal FRFT
wherec = —b— /405250 and note thatot (arctan(a)) = angleisd = — arctan(a). If the chirp rate changes over time,
1/a. Becauseé, g1 (u) = h, o(u), letd € (—7/2,7/2]. the optimal FRFT angle should also change over time:

_ / _ 1
3.2. Wy Using Chirp-Modulated Gaussian Window? Oop(t) = — arctan (wins(?)) arctan (¢"(1)) . (8)
ASTFT using chirp-modulated Gaussian window with time-!N Fig. 2(2), an example is given to illustrate the idea. The

varying variance(t) and FRFT anglé(t) is defined as FRFT angle depends on the slope of the instantaneous fre-
quency, i.e. the chirp rate. This idea can be applied tomdiffe

6(t) [ . —jwr ent kinds of window functions, but there may be no closed-
X (tw) = /700 @ (7) hoey,o0 (E =TI Tdr (1) o expression for the FRFT of the window function.
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@ (b)

Wne (1) = #(1)

Whs o) = #(1)

Fig. 2. The straight line shows the instantaneous frequency i, i, i, T
of the input signal. The ellipses are the 3 dB contour plotgg 3 The solid lines are the instantaneous frequencies. The

of the WVDs of the chirp-modulated Gaussian windows with
(a) fixed variance but time-varying FRFT angle, and (b) time

varying FRFT angle and time-varying variance.

3.4. Optimal Time-Varying Variance

In Fig. 1(b), larger variance (flatter ellipse) can yield trég
energy concentration (less blurring effect). Howeves not
true in Fig. 2(a). At time-frequency poinpt, too large vari-

ance makes the energy concentration lower rather thantigh
Accordingly, the variance should depends on the chirp rat

and its derivatives, as illustrated in Fig. 2(b).
Recall the ASTFT defined in (7). At time instahtthe

spectrogrardX géf))

is normalized into¢; (w).
distribution function. The variance of the distributiods@
known asnstantaneous bandwidth [17], is given by

2
(t,w)‘ is a function of frequency and

B = [ - ), ©)

where(w), is the mean of the distribution, also knowrlesal

€

Then,(;(w) can be deemed as a

solid ellipses are the 3 dB contour plots of the WVDs of chirp-

‘modulated Gaussian windows with optimal FRFT angles and

optimal variances, while the dashed ellipses are those with
interpolated FRFT angles and interpolated variances.

Whereq _ _(1 + 99//2)3/(10///21 r = _(10//4, g — /% + %,
and@ = </6 (9q2 + 1/81q¢* — 48r3). If other kind of win-

dow function is used, there may be no closed-form solution
fo popt, @and then one needs to numerically search the optimal
value ofp such that3? is minimized.

In practice, the environment is usually noisy. The inac-
curateA(t) and high-orderp(™ () may decrease rather than
increase the accuracy of the variance. That's why we let the
optimal variance in (12) depend only a#f'(t) and ¢ (¢).
However, in low noise environments, the performance may
be improved without the assumptions tht) varies slowly
ande(™ (t) = 0 for n > 4. In this case, one needs to numer-
ically search the optimal variance. Even so, (12) can still b
used as the initial estimate to fasten the optimizationgsec
under certain conditions.

frequency. Obviously, smaller instantaneous bandwidth leads

to higher energy concentration. Therefore, the optimaleal

of p(t) occurs whenB? is minimal.
Consider the general case thdt) = A(t) exp (jo(t)).

3.5. Time-Frequency-Varying Chirp-Modulated Gaus-
sian Window

To simplify the optimization problem, assume the amplitude=0r multicomponent signals, there would be multiple dif-
A(t) varies slowly and the high-order derivatives of the phasderent chirp rates at the same time instant. Each compo-

are close to zero, i.ep(™(t) =~ 0 for n > 4. Then, the
instantaneous bandwidth reduces into

T (vt
[1+ (]

2 8 .+ (10)

where the argumeritis omitted fromy(t) and p(t) for ex-

pression simplification. MinimaB? occurs when(;’—ﬂBf =0,
which leads to the following quartic eqaution:

("5~ 214 ()] o - () =0

popt IS the positive real root of the above eqgaution, i.e.

popt =S + /5% —q/(29),

(11)

(12)
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nent has its own optimal FRFT angle and optimal variance;
Accordingly, an ASTFT with time-frequency-varying chirp-
modulated Gaussian window is introduced:

0(t,w o * —jwT
Xp((;w))(t,w): [ K (7) B0y p(rny (t — TV 77 dr. (13)

It is very difficult to obtain the optimal solutions to(t, w)
andf(t,w). Instead, a method similar to that in [13] is used.
A signal with two components is considered as an exam-
ple. The solid lines in Fig. 3 represent the instantaneaass fr
quencies. It is obvious that these two components has dif-
ferent chirp rates, and thus they have different optimal FRF
angles ,,,1(t) andd,, »(¢)) and different optimal variances
(o1 (t) @nd p,, o(t)). For time-frequency (TF) points on
the first line, 0,1 () and p,,.1(t) are used. For TF points
on the second lind),, »(t) andp,, (t) are adopted. For TF
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Fig. 4. Contour plots of (a) optimized S-transform [23], (b) Fig. 5. Contour plots of (a) optimized S-transform [23], (b)
adaptive LPFT [24], (c) ASTFT using original Gaussian win-adaptive LPFT [24], (c) ASTFT using original Gaussian win-
dow [13], and (d) proposed ASTFT. All components havedow [13], and (d) proposed ASTFT. The amplitude of each
time-varying amplitude uniformly betwe&nand20. component is random uniformly distributed betweeand3
at each time instant, and the SNR is 7 dB.
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points between the two lines, FRFT angle betwégn (t;)

andd, »(t;) and variance between,, 1(t;) andp,, »(t;) are  S-transform in (a) cannot achieve high enough energy con-
reasonable choices. See the dashed ellipses in Fig. 3.Wor I@entration even though the kernel function is optimizede Th
complexity, we simply interpolate the values of the FRFT an-adaptive LPFT in (b) has good resolution in some time-

gle and the variance for TF points between lines. frequency regions but poor resolution in the others. Com-
paring (c) and (d), we can find out that rotating the Gaussian
3.6. Instantaneous Frequency Estimation window can significantly enhance the energy concentration.

Instantaneous frequency (IF) estimation is indispensable Besides, the proposed ASTFT in (d) has the very clear resolu-
quen y (IF) . ) Pense tion with little interference between components. We use th
cause the proposed window function relies on the chirp rate

An overview of some estimation methods is given in [1, 18] ctoncentration measure (CM) in [13] to quantitatively evalu
In this paper, we modify the estimation algorithm in [13]- In ate the energy concentration. The higher the CM, the more

stead of ridge detection method, Viterbi algorithm [19-&1] concentrated the TER's energy. The values of CM are 0.0088,

o . 0.0083, 0.0088 and 0.0221 in (a)-(d), respectively.
utilized to trace the optimal route that accumulates most en In real world, the environment is usually noisy. Consider

ergy in the time-frequency plane. One can use other kind 02; noisy signal with three components. The amplitude of each

.TFR and other kind of more robust estimation glgorlthm tocomponent is random uniformly distributed betwe&eand3
improve the performance. For example, the estimation algo-

thm in [22 ¢ i licated ) tsth at each time instant, and the SNR is 7 dB. The simulation re-
rithmin [. ]lper orms we ".1 compiicate .enV|ronmen stbu sultis shown in Fig. 5. Due to the noise, all the adaptive TFRs
the cost is higher computational complexity.

Obviously. the performance (resolution and robustness) & re more or less adaptive to the noise part instead of thalsign
A P ( )jart in some time-frequency regions. However, the proposed

ASTFT is more robust to noise than the other adaptive TFRs.

timation algorithm. Thus, the proposed ASTFT might not bg, i oy ample, the values of CM are 0.0085, 0.0084, 0.0085
able to yield a more accurate IF estimate. However, it is more . 100226 in (é)_(d) respectively ' ’

useful in applications like component separation and extra
tion because it is linear, additive and has very high regmiut 5 CONCLUSION
4. SIMULATIONS We propose an ASTFT with chirp-modulated Gaussian win-
dow, which is obtained from rotating the Gaussian window in

For a fair comparison, the proposed ASTFT is only com-the time-frequency plane by the FRFT. We derive the closed-
pared with some linear adaptive TFRs, including optimized Sform expressions for the chirp-modulated Gaussian window
transform [23], adaptive local polynomial Fourier transfio  and the optimal solutions of its two parameters, i.e. FRFT
(LPFT) [24] and ASTFT with original Gaussian window [13]. angle and variance. Considering the input may have mul-

Consider a noiseless signal where the two componentiple components, time-frequency-varying FRFT angle and
have time-varying amplitude uniformly distributed betwmee variance are developed. The proposed ASTFT greatly out-
0 and 20. The contour plots of the four adaptive TFRs performs the ASTFT in [13] and some other adaptive linear
are shown in Figs. 4(a)-(d), respectively. The optimizedTFRs in noiseless and noisy environments.

4357



6. REFERENCES

[1] E. Sejdi¢€, 1. Djurovi€, and J. Jiang, “Time-frequency

(13]

feature representation using energy concentration: an

overview of recent advancesDigital signal process-
ing, vol. 19, no. 1, pp. 153-183, 2009.

[2] B. Boashash,Time-frequency signal analysis and pro-
cessing: a comprehensive reference, Academic Press,

2015.

[3] D. L. Jones and T. W. Parks, “A high resolution
data-adaptive time-frequency representatiomtous-
tics, Speech and Signal Processing, |EEE Transactions

on, vol. 38, no. 12, pp. 2127-2135, 1990.
[4]

tributions concentration,”Signal Processing, vol. 81,
no. 3, pp. 621-631, 2001.

[5] S. Aviyente and W. J. Williams, “Minimum entropy
time-frequency distributions,”Signal Processing Let-

ters, IEEE, vol. 12, no. 1, pp. 37-40, 2005.

[6] I. Djurovi¢, E. Sejdic, and J. Jiang, “Frequency-bése
window width optimization for S-transform,” AEU-
International Journal of Electronics and Communica-

tions, vol. 62, no. 4, pp. 245-250, 2008.

[7] A. Bultan, “A four-parameter atomic decomposition of
chirplets,” |EEE Transactions on Signal Processing,
vol. 47, no. 3, pp. 731-745, 1999.

[8]
decomposition by basis pursuit3d AM review, vol. 43,
no. 1, pp. 129-159, 2001.

(9]
“Atomic decomposition for radar applicationsEEE
Transactions on Aerospace and Electronic Systems, vol.
44, no. 1, pp. 187-200, 2008.

[10]

L. Stankovi¢, “A measure of some time-frequency dis-

S. S. Chen, D. L. Donoho, and M. A. Saunders, “Atomic

(14]

(15]

(16]

(17]

(18]

(19]

[20]

0. A. Yeste-Ojeda, J. Grajal, and G. Lopez-Risueno,

(21]

H. Kawahara, |. Masuda-Katsuse, and A. De Cheveigne,

“Restructuring speech representations using :1122]
pitch-adaptive time—frequency smoothing and an

instantaneous-frequency-based FO extraction:
ble role of a repetitive structure in sounds Speech
communication, vol. 27, no. 3, pp. 187-207, 1999.

[11]
based on an adaptive short-time Fourier transfo&g”
nal Processing, IEEE Transactions on, vol. 58, no. 10,
pp. 5118-5128, 2010.

[12] T. K. Hon and A. Georgakis, “Enhancing the resolution

Possi-

[23]

J. Zhong and Y. Huang, “Time-frequency representation

(24]

of the spectrogram based on a simple adaptation proce-

dure,” Signal Processing, |IEEE Transactions on, vol.
60, no. 10, pp. 5566-5571,2012.

4358

S.-C. Pei and S.-G. Huang, “STFT with adaptive win-
dow width based on the chirp rateSignal Processing,
IEEE Transactions on, vol. 60, no. 8, pp. 4065-4080,
2012.

H. M. Ozaktas and D. Mendlovic, “Fourier transforms
of fractional order and their optical interpretatio@pt.
Commun., vol. 101, no. 3, pp. 163-169, 1993.

S.-C. Pei and S.-G. Huang, “Fast discrete linear canoni
cal transform based on CM-CC-CM decomposition and
FFT,” IEEE Transactionson Sgnal Processing, vol. 64,

no. 4, pp. 855-866, 2016.

S. C. Peiand S.-G. Huang, “Reversible joint Hilbert and
linear canonical transform without distortion,1EEE
transactions on signal processing, vol. 61, no. 17-20,
pp. 4768-4781, 2013.

Leon Cohen,Time-frequency analysis, vol. 299, Pren-
tice hall, 1995.

L. Stankovit, I. Djurovi¢, S. Stankovi¢, M. Simewio,

S. Djukanovi¢, and M. Dakovi¢, “Instantaneous fre-
guency in time—frequency analysis: Enhanced concepts
and performance of estimation algorithmBjygital Sg-

nal Processing, vol. 35, pp. 1-13, 2014.

L. Stankovic, I. Djurovic, A. Ohsumi, and H. ljima, “In-
stantaneous frequency estimation by using Wigner dis-
tribution and Viterbi algorithm.,” iH CASSP (6), 2003,

pp. 121-124.

C. Conru, I. Djurovic, C. loana, A. Quinquis, and
L. Stankovic, “Time-frequency detection using Gabor
filter bank and Viterbi based grouping algorithm,” in
Proceedings.(ICASSP’ 05). |IEEE International Confer-
ence on Acoustics, Speech, and Signal Processing, 2005.
IEEE, 2005, vol. 4, pp. iv—497.

I. Djurovit, “Viterbi algorithm for chirp-rate and stan-
taneous frequency estimationdgnal Processing, vol.
91, no. 5, pp. 1308-1314, 2011.

H.Zhang, G. Bi, W. Yang, S. G. Razul, and C. M. S. See,
“IF estimation of FM signals based on time-frequency
image,” |EEE Transactions on Aerospace and Elec-
tronic Systems, vol. 51, no. 1, pp. 326-343, 2015.

A. Moukadem, Z. Bouguila, D. O. Abdeslam, and A. Di-
eterlen, “A new optimized Stockwell transform applied
on synthetic and real non-stationary signal€igital
Sgnal Processing, vol. 46, pp. 226238, 2015.

I. Djurovi€, T. Thayaparan, and L. Stankovi¢, “Adaet
local polynomial Fourier transform in isarEURAS P
Journal on Applied Sgnal Processing, vol. 2006, pp.
129-129, 2006.



