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ABSTRACT

In this paper, we propose an adaptive STFT (ASTFT) with
adaptive chirp-modulated Gaussian window. The window is
obtained from rotating Gaussian function in time-frequency
plane by fractional Fourier transform (FRFT). It is completely
adaptive where the two parameters, FRFT rotation angle and
Gaussian variance, are signal-dependent. The angle depen-
dents on the chirp rate of the signal. The variance is deter-
mined by the chirp rate and its first derivative. Considering
the input may be multicomponent, a chirp-modulated Gaus-
sian window with time-frequency-varying angle and variance
is developed. The proposed ASTFT has very high energy con-
centration and less interference between components in noise-
less and noisy environments.

Index Terms— Adaptive time-frequency analysis, short-
time Fourier transform, concentration measure, fractional
Fourier transform, instantaneous frequency.

1. INTRODUCTION

No single time-frequency representation (TFR) with fixed
values of parameters can be the universal choice for all kinds
of signals. In order to achieve high energy concentration
for a variety of signals, adaptive (signal-dependent) TFRs
are attracting more attentions in recent years. A compre-
hensive introduction of adaptive TFRs has been provided
in [1, 2]. When designing an adaptive TFR, the choice of
the type of TFR and the design of adaptive approach are the
two core concerns. Concentration measure [3–6], adaptive
parametric time-frequency analysis based on atomic decom-
position [7–9] and adaptive kernel based on chirp rate [10–13]
are some popular adaptive approaches.

In [13], an adaptive STFT (ASTFT) based on chirp rate
was proposed. The ASTFT uses Gaussian window function
with window width (i.e. variance) dependent on the input sig-
nal. In this paper, we further improve the energy concentra-
tion of the ASTFT by using chirp-modulated Gaussian win-
dow instead, which is obtained from rotating the Gaussian
window (with varianceρ) in time-frequency plane by the frac-
tional Fourier transform (FRFT) [14, 15] (with rotation angle
θ). It is completely adaptive, where its two parametersρ and
θ are signal-dependent. The optimal FRFT angle depends on
the slope of the instantaneous frequency, i.e. chirp rate, of the
signal. The optimal variance is determined by the chirp rate

and its first derivative. Considering the input may be a multi-
component signal, there would be multiple chirp rates at the
same time instants. And it follows that some components may
have different values of optimal FRFT angles and variances
at the same time instants. Accordingly, a chirp-modulated
Gaussian window with time-frequency-varying FRFT angle
and variance is developed.

The idea of rotating window function in the time-frequency
plane can be applied to other kinds of TFRs and other kinds
of window functions. Here, we adopt the STFT with Gaus-
sian window function because the STFT is a linear TFR
with additivity and reversibility properties. Besides, there is
a closed-form expression for the chirp-modulated Gaussian
function and a closed-form solution to its optimal variance.

The chirp-modulated Gaussian window (chirplet) has
been used in the TFR based on concentration measure [3] and
TFRs based on atomic decomposition [7, 9]. However, their
computational complexity is considerable because there’sno
closed-form solutions to their optimization problems. Be-
sides, their adaptive approaches are less robust to noise.
Highly noisy environment may yield high energy concentra-
tion in the noise part instead of the signal part.

2. PRELIMINARY

An linear TFR can be expressed as

TFRx(t, f) =

∫ ∞

−∞
x (τ)h∗(t− τ)e−j2πfτdτ , (1)

whereh(τ) is the window function. To design an adaptive
window function for the STFT, one popular approach is based
on the chirp rate, i.e. first derivative of the instantaneousfre-
quency. In [11], the adaptive window function is time-varying

hσ(t)(τ) =
1

√

2πσ2(t)
e
− 1

2σ2(t)
τ2

. (2)

When σ2(t) = σ2 is fixed, it reduces to the conventional
STFT. In (2),σ2(t) is determined by the chirp ratef ′

inst:

2
√
2 ln 2σ(t) = max

l
2l s.t.

∫ t+l

t−l

|f ′
inst(τ)| dτ ≤ ξ. (3)

However, this ASTFT is not completely adaptive because the
thresholdξ is user-defined, and the estimation of the instan-
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taneous frequencyfinst(t) is not signal-dependent. Plus, there
is no proof that (3) is optimal in some sense.

In [13], a more powerful ASTFT is developed using the
following window function:

hσ(t,f)(τ) =
1

√

2πσ2(t, f)
e
− 1

2σ2(t,f)
τ2

, (4)

whereσ2(t, f) is time-frequency-varying because there may
be multiple different chirp rates at the same time instant for
multicomponent signals. The optimal value ofσ2(t, f) is

σ2(t, f) =
1

2π |f ′
inst(t, f)|

, (5)

wherefinst(t, f) is the instantaneous frequencies. If the in-
put is a monocomponent linear FM signal, then the relation
reduces intoσ2(t) = 1/ (2π |f ′

inst(t)|). This relation is more
concise and more accurate than that in (3). Besides, an adap-
tive low-complexity algorithm was proposed in [13] for in-
stantaneous frequency estimation.

3. ASTFT WITH CHIRP-MODULATED GAUSSIAN
WINDOW

The time-frequency resolution of the ASTFT in [13] is still
limited by the Heisenberg uncertainty principle. To solve
this problem, we replace the Gaussian window by chirp-
modulated Gaussian window.

3.1. Chirp-Modulated Gaussian Function

FRFT [14, 16] can produce a rotation in the time-frequency
plane. The FRFT with rotation angleθ 6= 0 is defined as

xθ(u) =

√

1− j cot θ

2π
ej

cot θ
2 u2

∞
∫

−∞

e−j csc θut+j cot θ
2 t2x(t)dt.

Consider a Gaussian function with varianceρ, denoted by
gρ(t). Performing the FRFT to rotategρ(t) clockwise in the
time-frequency plane with angleθ, we havegρ,θ(u). Normal-
izing gρ,θ(u) leads to the chirp-modulated Gaussian function:

hρ,θ(u) = c0e
− 1

2
ρ(1+cot2θ)

1+ρ2cot2θ
u2

e
−j 1

2
cot θ(ρ2−1)

1+ρ2cot2θ
u2

, (6)

wherec0 = 1√
2π

√

ρ(1+cot2θ)
1+ρ2cot2θ , and note thatcot(arctan(a)) =

1/a. Becausehρ,θ±π(u) = hρ,θ(u), let θ ∈ (−π/2, π/2].

3.2. Wy Using Chirp-Modulated Gaussian Window?

ASTFT using chirp-modulated Gaussian window with time-
varying varianceρ(t) and FRFT angleθ(t) is defined as

X
θ(t)
ρ(t) (t, ω) =

∫ ∞

−∞
x (τ) h∗

ρ(t),θ(t)(t− τ)e−jωτdτ . (7)

at bω = +

t

ω

1

| |a
ρ =

1

| |a
ρ <

1

| |a
ρ >

(a)

at bω = +

t

ω

arctan( )aθ = −

arctan( )aθ < −

0θ =

(b)

Fig. 1. The straight line shows the instantaneous frequency of
the input signal. The ellipses are the 3 dB contour plots of the
WVDs of (a) Gaussian windows with different variances and
(b) chirp-modulated Gaussian windows with same variance
but different FRFT angles.

First, consider the simplest case thatx(t) is a linear FM sig-
nal, say,x(t) = exp

(

j(a2 t
2 + bt)

)

. Then, the variance and
FRFT angle don’t need to change over time, i.e.ρ(t) = ρ
and θ(t) = θ. The WVD of x(t) is a straight line in the
time-frequency plane, as illustrated in Fig. 1. The WVD of
the original Gaussian window (i.e.θ = 0) is a 2D Gaussian
function with shape depending on the varianceρ. In Fig. 1(a),
the ellipses represent the 3 dB contour plots of the 2D Gaus-
sian functions with differentρ. The squared magnitude of
the ASTFT can be interpreted as the 2D convolution of the
WVDs ofx(t) andhρ,θ(t), i.e. the straight line blurred by the
2D Gaussian function. Accordingly, one needs to find the op-
timal variance (shape) such that the blurring effect is minimal.
In [13], it has been derived that the optimal solution depends
on the chirp rate and isρ = 1/ |a| in this example.

Next, consider the chirp-modulated Gaussian window
hρ,θ(t). The ellipses in Fig. 1(b) shows the 3 dB contour
plots of the WVDs ofhρ,θ(t) with the same varianceρ but
different rotation anglesθ. It is obvious that the optimalθ
depends on the chirp rate and isθ = − arctan(a) in this
example. Comparing Fig. 1(b) with Fig. 1(a), the chirp-
modulated Gaussian window yields less blurring effect than
the original Gaussian window if the variance is large enough.

3.3. Optimal Time-Varying FRFT Angle

Consider a more general form thatx(t) = A(t) exp (jϕ(t)).
The instantaneous frequency and the chirp rate areωinst(t) =
ϕ′(t) andω′

inst(t) = ϕ′′(t), respectively. The signal in Fig. 1
hasωinst(t) = at+ b andω′

inst(t) = a, and the optimal FRFT
angle isθ = − arctan(a). If the chirp rate changes over time,
the optimal FRFT angle should also change over time:

θopt(t) = − arctan (ω′
inst(t)) = − arctan (ϕ′′(t)) . (8)

In Fig. 2(a), an example is given to illustrate the idea. The
FRFT angle depends on the slope of the instantaneous fre-
quency, i.e. the chirp rate. This idea can be applied to differ-
ent kinds of window functions, but there may be no closed-
form expression for the FRFT of the window function.
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Fig. 2. The straight line shows the instantaneous frequency
of the input signal. The ellipses are the 3 dB contour plots
of the WVDs of the chirp-modulated Gaussian windows with
(a) fixed variance but time-varying FRFT angle, and (b) time-
varying FRFT angle and time-varying variance.

3.4. Optimal Time-Varying Variance

In Fig. 1(b), larger variance (flatter ellipse) can yield higher
energy concentration (less blurring effect). However, it is not
true in Fig. 2(a). At time-frequency pointp2, too large vari-
ance makes the energy concentration lower rather than higher.
Accordingly, the variance should depends on the chirp rate
and its derivatives, as illustrated in Fig. 2(b).

Recall the ASTFT defined in (7). At time instantt, the

spectrogram
∣

∣

∣
X

θ(t)
ρ(t) (t, ω)

∣

∣

∣

2

is a function of frequencyω and

is normalized intoζt(ω). Then,ζt(ω) can be deemed as a
distribution function. The variance of the distribution, also
known asinstantaneous bandwidth [17], is given by

B2
t =

∫ ∞

−∞
(ω − 〈ω〉t)

2
ζt(ω)dω, (9)

where〈ω〉t is the mean of the distribution, also known aslocal
frequency. Obviously, smaller instantaneous bandwidth leads
to higher energy concentration. Therefore, the optimal value
of ρ(t) occurs whenB2

t is minimal.
Consider the general case thatx(t) = A(t) exp (jϕ(t)).

To simplify the optimization problem, assume the amplitude
A(t) varies slowly and the high-order derivatives of the phase
are close to zero, i.e.ϕ(n)(t) ≈ 0 for n ≥ 4. Then, the
instantaneous bandwidth reduces into

B2
t =

1

2

[

1 + (ϕ′′)
2
]

ρ−1+
1

8

(ϕ′′′)
2
[

(ϕ′′)
2
ρ−1 + ρ

]2

[

1 + (ϕ′′)
2
]2 , (10)

where the argumentt is omitted fromϕ(t) andρ(t) for ex-
pression simplification. MinimalB2

t occurs when∂
∂ρ

B2
t = 0,

which leads to the following quartic eqaution:

(ϕ′′′)
2
ρ4 − 2

[

1 + (ϕ′′)
2
]3

ρ− (ϕ′′′)
2
(ϕ′′)

4
= 0. (11)

ρopt is the positive real root of the above eqaution, i.e.

ρopt = S +
√

−S2 − q/(2S), (12)

t

ω

1t 2t 3t

inst ,1 1( ) ( )t tω ϕ′=

inst ,2 2( ) ( )t tω ϕ′=

Fig. 3. The solid lines are the instantaneous frequencies. The
solid ellipses are the 3 dB contour plots of the WVDs of chirp-
modulated Gaussian windows with optimal FRFT angles and
optimal variances, while the dashed ellipses are those with
interpolated FRFT angles and interpolated variances.

whereq = −(1 + ϕ′′2)3/ϕ′′′2, r = −ϕ′′4, S =
√

Q
12 + r

Q
,

andQ = 3

√

6
(

9q2 +
√

81q4 − 48r3
)

. If other kind of win-

dow function is used, there may be no closed-form solution
to ρopt, and then one needs to numerically search the optimal
value ofρ such thatB2

t is minimized.
In practice, the environment is usually noisy. The inac-

curateA(t) and high-orderϕ(n)(t) may decrease rather than
increase the accuracy of the variance. That’s why we let the
optimal variance in (12) depend only onϕ′′(t) andϕ′′′(t).
However, in low noise environments, the performance may
be improved without the assumptions thatA(t) varies slowly
andϕ(n)(t) ≈ 0 for n ≥ 4. In this case, one needs to numer-
ically search the optimal variance. Even so, (12) can still be
used as the initial estimate to fasten the optimization process
under certain conditions.

3.5. Time-Frequency-Varying Chirp-Modulated Gaus-
sian Window

For multicomponent signals, there would be multiple dif-
ferent chirp rates at the same time instant. Each compo-
nent has its own optimal FRFT angle and optimal variance;
Accordingly, an ASTFT with time-frequency-varying chirp-
modulated Gaussian window is introduced:

X
θ(t,ω)
ρ(t,ω)(t, ω)=

∫ ∞

−∞
x (τ) h∗

θ(t,ω),ρ(t,ω)(t− τ)e−jωτdτ . (13)

It is very difficult to obtain the optimal solutions toρ(t, ω)
andθ(t, ω). Instead, a method similar to that in [13] is used.

A signal with two components is considered as an exam-
ple. The solid lines in Fig. 3 represent the instantaneous fre-
quencies. It is obvious that these two components has dif-
ferent chirp rates, and thus they have different optimal FRFT
angles (θopt,1(t) andθopt,2(t)) and different optimal variances
(ρopt,1(t) and ρopt,2(t)). For time-frequency (TF) points on
the first line,θopt,1(t) andρopt,1(t) are used. For TF points
on the second line,θopt,2(t) andρopt,2(t) are adopted. For TF
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Fig. 4. Contour plots of (a) optimized S-transform [23], (b)
adaptive LPFT [24], (c) ASTFT using original Gaussian win-
dow [13], and (d) proposed ASTFT. All components have
time-varying amplitude uniformly between0 and20.

points between the two lines, FRFT angle betweenθopt,1(ti)
andθopt,2(ti) and variance betweenρopt,1(ti) andρopt,2(ti) are
reasonable choices. See the dashed ellipses in Fig. 3. For low
complexity, we simply interpolate the values of the FRFT an-
gle and the variance for TF points between lines.

3.6. Instantaneous Frequency Estimation

Instantaneous frequency (IF) estimation is indispensablebe-
cause the proposed window function relies on the chirp rate.
An overview of some estimation methods is given in [1, 18].
In this paper, we modify the estimation algorithm in [13]. In-
stead of ridge detection method, Viterbi algorithm [19–21]is
utilized to trace the optimal route that accumulates most en-
ergy in the time-frequency plane. One can use other kind of
TFR and other kind of more robust estimation algorithm to
improve the performance. For example, the estimation algo-
rithm in [22] performs well in complicated environments, but
the cost is higher computational complexity.

Obviously, the performance (resolution and robustness) of
the proposed ASTFT is affected by the accuracy of the IF es-
timation algorithm. Thus, the proposed ASTFT might not be
able to yield a more accurate IF estimate. However, it is more
useful in applications like component separation and extrac-
tion because it is linear, additive and has very high resolution.

4. SIMULATIONS

For a fair comparison, the proposed ASTFT is only com-
pared with some linear adaptive TFRs, including optimized S-
transform [23], adaptive local polynomial Fourier transform
(LPFT) [24] and ASTFT with original Gaussian window [13].

Consider a noiseless signal where the two components
have time-varying amplitude uniformly distributed between
0 and 20. The contour plots of the four adaptive TFRs
are shown in Figs. 4(a)-(d), respectively. The optimized
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Fig. 5. Contour plots of (a) optimized S-transform [23], (b)
adaptive LPFT [24], (c) ASTFT using original Gaussian win-
dow [13], and (d) proposed ASTFT. The amplitude of each
component is random uniformly distributed between2 and3
at each time instant, and the SNR is 7 dB.

S-transform in (a) cannot achieve high enough energy con-
centration even though the kernel function is optimized. The
adaptive LPFT in (b) has good resolution in some time-
frequency regions but poor resolution in the others. Com-
paring (c) and (d), we can find out that rotating the Gaussian
window can significantly enhance the energy concentration.
Besides, the proposed ASTFT in (d) has the very clear resolu-
tion with little interference between components. We use the
concentration measure (CM) in [13] to quantitatively evalu-
ate the energy concentration. The higher the CM, the more
concentrated the TFR’s energy. The values of CM are 0.0088,
0.0083, 0.0088 and 0.0221 in (a)-(d), respectively.

In real world, the environment is usually noisy. Consider
a noisy signal with three components. The amplitude of each
component is random uniformly distributed between2 and3
at each time instant, and the SNR is 7 dB. The simulation re-
sult is shown in Fig. 5. Due to the noise, all the adaptive TFRs
are more or less adaptive to the noise part instead of the signal
part in some time-frequency regions. However, the proposed
ASTFT is more robust to noise than the other adaptive TFRs.
In this example, the values of CM are 0.0085, 0.0084, 0.0085
and 0.0226 in (a)-(d), respectively.

5. CONCLUSION

We propose an ASTFT with chirp-modulated Gaussian win-
dow, which is obtained from rotating the Gaussian window in
the time-frequency plane by the FRFT. We derive the closed-
form expressions for the chirp-modulated Gaussian window
and the optimal solutions of its two parameters, i.e. FRFT
angle and variance. Considering the input may have mul-
tiple components, time-frequency-varying FRFT angle and
variance are developed. The proposed ASTFT greatly out-
performs the ASTFT in [13] and some other adaptive linear
TFRs in noiseless and noisy environments.
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local polynomial Fourier transform in isar,”EURASIP
Journal on Applied Signal Processing, vol. 2006, pp.
129–129, 2006.

4358


