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ABSTRACT

The problem of identification of a nonstationary autoregressive pro-
cess with unknown, and possibly time-varying, rate of parameter
changes, is considered and solved using the parallel estimation ap-
proach. The proposed two-stage estimation scheme, which com-
bines the local estimation approach with the basis function one, of-
fers both quantitative and qualitative improvements compared with
the currently used single-stage methods.

Index Terms— Identification of nonstationary processes, selec-
tion of estimation bandwidth, parametric spectrum estimation.

1. INTRODUCTION

Due to mathematical simplicity and good approximation properties
time-varying autoregressive (AR) models have found their way to
a large number of practical applications, such as signal prediction
[1], [2], elimination of impulsive disturbances [3], [4], analysis
of biomedical signals [5], [6], [7], [8], [9], [10], equalization of
telecommunication channels [11], [12], and spectrum estimation
[13], [14], [15], among many others. To take full advantage of
the AR model based technique, one needs good identification algo-
rithms, capable of estimating, with sufficient accuracy, time-varying
model parameters.

The existing approaches to identification of nonstationary pro-
cesses can be broadly divided into local estimation methods (based
on the assumption that the analyzed process can be regarded as sta-
tionary in sufficiently short time intervals), Kalman filter methods
(based on explicit stochastic models of parameter variation), and ba-
sis function methods (based on deterministic models of parameter
changes). A comparative analysis of different estimation techniques
mentioned above can be found e.g. in [16] and [17].

In this paper, extending results presented in [18], we will de-
scribe a new approach to identification of nonstationary AR pro-
cesses, which combines the local estimation method, incorporated
at the first stage of identification, with the basis function method,
used at the second stage to smooth local parameter estimates in a
way that takes into account their accuracy. We will show that such a
combined method yields better results than the component methods.

This work was partially supported by the National Science Center under
the agreement UMO-2015/17/B/ST7/03772. Calculations were carried out at
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2. LOCALLY STATIONARY AUTOREGRESSIVE PROCESS

Consider a nonstationary autoregressive process {y(t)} governed by

y(t) =

n∑
l=1

al(t)y(t− l) + e(t) = αT(t)ϕ(t) + e(t) (1)

where t = . . . ,−1, 0, 1, . . . denotes normalized (dimensionless)
discrete time, α(t) = [a1(t), . . . , an(t)]

T denotes the vector
of time-varying autoregressive coefficients, ϕ(t) = [y(t − 1),
. . . , y(t−n)]T denotes regression vector, and {e(t)} is the sequence
of independent Gaussian variables with zero mean and time-varying
variance ρ(t).

When AR coefficients in (1) vary smoothly with time, and the
forming filter 1/A[z−1,α(t)], where

A[z−1,α(t)] = 1−
n∑

l=1

al(t)z
−l

is uniformly stable in the analyzed time interval, the signal {y(t)}
belongs to the class of locally stationary processes with well-defined
evolutionary spectral representation [19], [20], [21]. Under such
conditions (see [20] for more technical details) the time-varying
spectral density function of {y(t)} can be uniquely defined as

S(ω, t) =
ρ(t)

|A[ejω,α(t)]|2 (2)

where ω ∈ (−π, π] denotes the normalized angular frequency.

3. LOCAL ESTIMATION APPROACH

3.1. Weighted Yule-Walker estimates

Locally stationary processes can be identified using local estima-
tion techniques, namely the estimates of α(t) and ρ(t) can be ob-
tained by fitting a time-invariant model to a fixed-length data seg-
ment {y(t − k), . . . , y(t + k)} of width 2k + 1, centered at t. The
integer number k, which determines the size of local analysis win-
dow Tk(t) = [t − k, t + k], will be further called an estimation
bandwidth coefficient. The name stems from the fact that k controls
the estimation bandwidth of the local estimation algorithm, i.e., the
frequency range in which signal parameters can be tracked “success-
fully” (the larger k the smaller the bandwidth) [17].

Following [19] and [18], we will use for local estimation pur-
poses the weighted Yule-Walker (WYW) scheme. The correspond-
ing estimates can be expressed in the form

α̂k(t) = [â1|k(t), . . . , ân|k(t)]
T = R̂−1

k (t)r̂k(t) (3)

ρ̂k(t) = r̂0|k(t)− r̂Tk (t)α̂k(t) (4)
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where

R̂k(t) =

 r̂0|k(t) . . . r̂n−1|k(t)
...

. . .
...

r̂n−1|k(t) . . . r̂0|k(t)


r̂k(t) =

[
r̂1|k(t) . . . r̂n|k(t)

]T
,

r̂l|k(t), l = 0, . . . , n denote the local estimates of the autocorrela-
tion coefficients

r̂l|k(t) =
pl|k(t)

Lk
, Lk =

k∑
i=−k

w2
k(i)

pl|k(t) =

k∑
i=−k+l

yk(t+ i|t)yk(t+ i− l|t),

and yk(t + i|t) = wk(i)y(t + i), i = −k, . . . , k, denotes the
weighted (tapered) data sequence. We will assume that data taper
wk(i), wk(0) = 1, is a bell-shaped, nonnegative sequence defined
on the interval [−k, k]. According to [18], there is a strong empirical
evidence in favor of the cosinusoidal taper wk(i) = cos{πi/[2(k +
1)]}, which not only offers a good tradeoff between the bias and vari-
ance components of the mean-squared parameter tracking errors, but
also allows for time-recursive computation of pl|k(t). The estimates
α̂k(t) and ρ̂k(t) can be computed using the Levinson-Durbin algo-
rithm [22].

Based on the local identification results, the parametric spectrum
estimator can be expressed in the form

Ŝk(ω, t) =
ρ̂k(t)

|A[ejω, α̂k(t)]|2
. (5)

Parametric spectrum estimators, such as (5), have some well-known
advantages over the nonparametric (Fourier transform based) solu-
tions – they offer higher estimation accuracy (especially for small
data sets) and yield results which, due to elimination of spurious
spectral peaks, are usually easier to interpret [23], [24].

Remark

The choice of the particular estimation method summarized above
was motivated by the fact that the WYW estimators minimize the so-
called Whittle likelihood, i.e., the Kullback-Leibler divergence be-
tween the parametric AR spectrum and the nonparametric weighted
periodogram one [19]. It is therefore very well suited to the task of
spectrum estimation.

3.2. Bandwidth-adaptive solution

If the rate of signal nonstationarity is itself time-varying, it may be
difficult to find a single value of bandwidth parameter that would
guarantee good parameter tracking at all instants of time. To over-
come this limitation, one can simultaneously run several local es-
timation algorithms equipped with different bandwidth parameters
ki, i = 1, . . . ,K. As shown in [18], the reasonable estimate of the
most appropriate value of k at the instant t can be obtained from

k̂(t) = argmin
k∈K

FPEk(t) (6)

where K = {k1, . . . , kK} and FPEk(t) denotes the suitably modi-
fied Akaike’s FPE statistic [25], [26]

FPEk(t) =
1 + n

Nk

1− n
Nk

ρ̂k(t), Nk =
[
∑k

i=−k w
2
k(i)]

2∑k
i=−k w

4
k(i)

. (7)

The corresponding estimate of the instantaneous spectrum can be
obtained in the form

Ŝ(ω, t) =
ρ̂k̂(t)(t)

|A[ejω, α̂k̂(t)(t)]|2
. (8)

The parallel estimation scheme described above is robust to un-
known and/or changing rate of parameter variation and often out-
performs, in terms of spectral estimation errors, all component
fixed-bandwidth algorithms.

4. TWO-STAGE IDENTIFICATION PROCEDURE

4.1. Local smoothing of weighted Yule-Walker estimates

When the local estimation technique is used, the estimated parameter
trajectories and consequently also the obtained evolutionary spectra,
are not smooth functions of time – even if true process parameters
change in a smooth manner (as assumed here). In parallel estima-
tion schemes this ruggedness effect may be further strengthened due
to bandwidth “switching”. In applications that require qualitative
(e.g. visual) evaluation of spectral estimation results such a lack of
smoothness may be considered a drawback. The way out of diffi-
culty, proposed in this paper, is local smoothing of the results ob-
tained at the first stage of identification, described in the previous
section.

Denote by T0 = [t0 − M, t0 + M ] the local approximation
interval of length 2M + 1, centered at the instant t0. To smooth
parameter estimates α̂k̂(t)(t), ρ̂k̂(t)(t), t ∈ T0, we will apply the
following approximations

âl|k̂(t)(t)
∼= fT(t− t0)ηl(t0), t ∈ T0, l = 1, . . . , n (9)

ρ̂k̂(t)(t)
∼= fT(t− t0)γ(t0), t ∈ T0 (10)

where f(t) = [f1(t), . . . , fm(t)]T is the vector made up of m
known, linearly independent discrete-time functions defined on T0,
further referred to as basis functions (BF), and ηl(t0), l = 1, . . . , n,
γ(t0) denote m-dimensional vectors of approximating coefficients.
The frequently chosen set of basis functions consists of powers of
time [fi(t) = ti−1, i = 1, . . . ,m], which corresponds to the Taylor
series (polynomial) approximation of the smoothed sequence.

Note that (9) can be rewritten in a more compact form as

α̂k̂(t)(t)
∼= FT(t− t0)β(t0)

where

F(t) =

 f(t) 0
. . .

0 f(t)


nm×n

β(t0) =

 η1(t0)
...

ηn(t0)


nm×1

In the stationary case, where α(t) = α, ρ(t) = ρ, ∀t, it holds that
[27]

cov[α̂k(t)] ∼=
ρR−1

Nk
= Qk, var[ρ̂k(t)] ∼=

2ρ2

Nk
= qk

where R = E[ϕ(t)ϕT (t)] denotes covariance matrix of the regres-
sion vector. Therefore, to account for accuracy of the local estima-
tors that are combined, we will minimize the weighted least squares
measure of fit

β̂(t0) = argmin
β

∑
t∈T0

‖ α̂k̂(t)(t)− FT(t− t0)β ‖2Q̂−1

k̂(t)
(t)

(11)
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γ̂(t0) = argmin
γ

∑
t∈T0

[ρ̂k̂(t)(t)− fT(t− t0)γ]2

q̂k̂(t)(t)
(12)

where

Q̂k(t) =
ρ̂k(t)R̂

−1
k (t)

Nk
, q̂k(t) =

2ρ̂2k(t)

Nk
.

Since R̂k(t)α̂k(t) = r̂k(t),∀k, t [cf. (3)], one arrives at

β̂(t0) =

[∑
t∈T0

F(t− t0)
Nk̂(t)R̂k̂(t)(t)

ρ̂k̂(t)(t)
FT(t− t0)

]−1

×

[∑
t∈T0

F(t− t0)
Nk̂(t)r̂k̂(t)(t)

ρ̂k̂(t)(t)

]

=

{∑
t∈T0

Nk̂(t)R̂k̂(t)(t)

ρ̂k̂(t)(t)
⊗ [f(t− t0)fT(t− t0)]

}−1

×

[∑
t∈T0

Nk̂(t)r̂k̂(t)(t)

ρ̂k̂(t)(t)
⊗ f(t− t0)

]
(13)

where⊗ denotes Kronecker product of the respective vectors/matrices.
The corresponding expression for γ̂(t0) takes the form

γ̂(t0) =

[∑
t∈T0

Nk̂(t)f(t− t0)f
T(t− t0)

ρ̂2
k̂(t)

(t)

]−1

×

[∑
t∈T0

Nk̂(t)f(t− t0)
ρ̂k̂(t)(t)

]
.

(14)

Once the approximation coefficients are determined using (13) and
(14), the smoothed parameter trajectories can be obtained from

α̃(t) = FT(t− t0)β̂(t0), ρ̃(t) = fT(t− t0)γ̂(t0)
t ∈ T0

(15)

which results in the following estimate of S(ω, t)

S̃(ω, t) =
ρ̃(t)

|A[ejω, α̃(t)]|2 . (16)

Remark 1

We note that in the special case where ρ is unknown but constant,
and k is fixed, one can adopt Q̂k(t) = ρ̂k(t0)R̂

−1
k (t)/Nk, leading

to

β̂k(t0) =

{∑
t∈T0

R̂k(t)⊗ [f(t− t0)fT(t− t0)]

}−1

×

[∑
t∈T0

r̂k(t)⊗ f(t− t0)

] (17)

which is identical with the approximation formula derived by
Dahlhaus [19]. The corresponding estimates of α̂k(t) and ρ̂k(t0)
can be obtained from

α̂k(t) = FT(t− t0)β̂k(t0), t ∈ T0

ρ̂k(t0) =
1

2M + 1

∑
t∈T0

[y(t)− α̂T
k (t)ϕ(t)]

2.
(18)

Remark 2

The proposed postfiltering scheme differs from the result of direct
application of the method of basis functions [28] – [35]. In this ap-
proach process parameters are modeled as linear combinations of the
functions f1(t), . . . , fm(t), i.e., it is assumed that

α(t) = FT(t− t0)β(t0), t ∈ T0

which leads to

y(t) = ψT(t)β(t0) + e(t) (19)

where ψ(t) = ϕ(t)⊗ f(t− t0).
Based on (19), the estimate of β(t0) can be obtained in the form

β̂(t0) = argmin
β

∑
t∈T0

[y(t)−ψT(t)β]2

=

{∑
t∈T0

[ϕ(t)ϕT(t)]⊗ [f(t− t0)fT(t− t0)]

}−1

×

{∑
t∈T0

[y(t)ϕ(t)]⊗ f(t− t0)

}
.

(20)

Since the quantities ϕ(t)ϕT(t) and y(t)ϕ(t) can be viewed as
pointwise “pre-estimates” of R(t) and r(t), respectively, the for-
mula (20) bears some resemblance to (17).

4.2. Clipping

It is known that accuracy of the basis function approximations gen-
erally decreases towards both ends of the approximation interval
T0 = [t0 − M, t0 + M ] [33]. This effect is quite understand-
able, since while in the middle of T0 approximation is based on both
“past” and “future” data samples, at the instants close to t0 + M
and t0 −M only the “past” or “future” data are available, respec-
tively. When identification is carried out for a finite impulse response
(FIR) system subject to a stationary excitation, such a behavior can
be explained analytically using the concept of a frequency response
associated with the BF algorithm [17].

Excessive estimation errors, observed at both ends of T0, can be
avoided if the BF estimates are computed for the entire approxima-
tion interval, but used in a smaller sub-interval T ∗0 = [t0 −M + l,
t0 +M − l], where 1 ≤ l ≤ M . Such an approach was advocated
e.g. in [19] and [36]. To apply “clipping” technique described above,
one should work with partially overlapping approximation intervals,
i.e., instead of setting t0 =M +1+2Mi, i = 0, 1, . . ., one should
use the following rule t0 =M + 1 + 2(M − l)i, i = 0, 1, . . . .

Finally, we note that whenever a decision delay of kmax +M
sampling intervals is tolerable, where kmax = max{k ∈ K}, the
proposed two-stage identification method can be operated in the so-
called nearly real-time mode.

5. SIMULATION RESULTS

The time-varying AR model of order n = 8, used for simulation
purposes, had 4 pairs of complex-conjugate poles, evenly spread in
terms of their radial location and with the same magnitude equal to
0.995 – see Fig. 1. As symbolically depicted in Fig. 2, this fixed
pole constellation was moved (rotated), with a constant speed, from
the low-frequency position A, to the high-frequency position B (A-
B) and vice versa (B-A). Additionally, there were 3 periods of time
invariance (A-A, B-B, A-A).
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Fig. 1. Two terminal constellations of AR model poles and the cor-
responding time-invariant spectra.

Fig. 2. Simulation scenario.

To check performance of the compared methods under different
rates of signal nonstationarity, 3 different values of simulation time
Ts were considered (56000, 28000 and 14000), resulting in 3 dif-
ferent speeds of parameter variation (SoV): S1 (slow), S2 (medium)
and S3 (fast), respectively. To guarantee that estimation can be al-
ways started at the instant 1 and ended at the instant Ts, data genera-
tion was started 1000 instants prior to t = 1 and continued for 1000
instants after t = Ts .

Table 1 shows comparison – for different orders of the poly-
nomial basis – of the results yielded by the proposed two-stage
variable-bandwidth algorithm (15)-(16), combining estimates pro-
vided by 3 local WYW algorithms (k1 = 225, k2 = 337, k3 = 505,
cosinusoidal taper), with the analogous results obtained for 3
constant-bandwidth Dahlhaus algorithms (17)-(18) [D(k1), D(k2),
D(k3)], and the classical BF algorithm (20). The squared parame-
ter estimation errors and Itakura-Saito spectral distortion measures
[37], shown in Table 1, were averaged over t ∈ [1, Ts] and 100
independent realizations of {y(t)}. In all cases M (the half-width
of the local approximation interval) was set to 50 and l was set to 10
(20% overlap).

Note that in almost all cases the proposed algorithm outper-
formed the best-fitted Dahlhaus algorithm, and that its perfor-
mance was much better than performance of the BF algorithm.
The obtained results were also better than the results yielded by
the bandwidth-adaptive algorithm (3)-(8) based on local estimation
only – see Table 2. Finally, note that in the case considered the best
results were obtained for a small number of basis functions (m = 2).

6. CONCLUSION

A new two-stage procedure for identification of locally stationary au-
toregressive processes was described and compared with the method
proposed by Dahlhaus, and with the classical method of basis func-
tions. The proposed algorithm adapts to the unknown and possibly
time-varying rate of process nonstationarity, yields better results than
the local estimation approach, used at the first stage of identification,
and provides better results than the direct basis function approach,
used at the second stage.

Table 1. Results of comparison of 3 identification algorithms, de-
scribed in the text, obtained for different quality measures (mean-
squared parameter estimation error, Itakura-Saito spectral distortion
measure), different number of basis functions (m = 1, . . . , 5), and
different peeds of parameter variation (S1, S2, S3).

parameter estimation errors

SoV m D(k1) D(k2) D(k3) BF Proposed
1 3.178 0.579 0.208 1.365 0.208
2 3.326 0.585 0.200 2.833 0.203

S1 3 3.362 0.590 0.201 4.208 0.204
4 3.376 0.591 0.201 6.072 0.204
5 3.384 0.592 0.201 9.255 0.204
1 3.269 0.713 0.449 1.406 0.345
2 3.385 0.688 0.409 2.884 0.313

S2 3 3.420 0.691 0.410 4.274 0.315
4 3.433 0.693 0.410 6.232 0.315
5 3.441 0.693 0.410 9.498 0.315
1 3.484 1.416 2.180 1.566 0.826
2 3.417 1.242 1.980 2.885 0.674

S3 3 3.447 1.246 1.982 4.279 0.677
4 3.460 1.247 1.982 6.278 0.678
5 3.468 1.248 1.982 9.502 0.678

spectrum estimation errors

SoV m D(k1) D(k2) D(k3) BF Proposed
1 0.140 0.062 0.050 0.246 0.042
2 0.144 0.060 0.048 0.546 0.040

S1 3 0.146 0.061 0.048 0.942 0.041
4 0.147 0.061 0.048 1.604 0.041
5 0.147 0.061 0.048 3.048 0.041
1 0.166 0.104 0.131 0.254 0.074
2 0.162 0.095 0.122 0.549 0.066

S2 3 0.165 0.096 0.123 0.950 0.067
4 0.165 0.096 0.123 1.630 0.067
5 0.166 0.096 0.123 3.107 0.067
1 0.268 0.296 0.496 0.284 0.204
2 0.235 0.263 0.471 0.547 0.179

S3 3 0.240 0.266 0.474 0.944 0.181
4 0.241 0.266 0.475 1.622 0.181
5 0.241 0.266 0.475 3.080 0.181

Table 2. Identification results obtained using 3 fixed-bandwidth
WYW algorithms (k1, k2, k3) and the variable-bandwidth algorithm
based on minimization of the FPE statistic, described in [18].

parameter estimation errors

SoV k1 k2 k3 FPE
S1 4.187 0.686 0.209 0.234
S2 4.242 0.785 0.418 0.346
S3 4.258 1.337 1.991 0.713

spectrum estimation errors

SoV k1 k2 k3 FPE
S1 0.165 0.064 0.046 0.043
S2 0.185 0.111 0.160 0.070
S3 0.289 0.339 0.582 0.184
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