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ABSTRACT

An augmented nonlinear complex LMS (ANCLMS) algo-
rithm is proposed to adaptively mitigate both the linear and
nonlinear self-interference (SI) components in a full-duplex
direct-conversion transceiver (DCT). A data prewhitening
scheme, which exploits the known SI signal distributions, is
also adopted to accelerate the convergence. Theoretical mean
and mean square performance evaluations of the proposed SI
canceller are performed and fully support the proposed ap-
proach. Computer simulations on wireless local area network
(WLAN) standard compliant waveforms in practical full-
duplex (FD) direct-conversion transceiver settings support
the analysis.

Index Terms— Full-duplex communications, power am-
plifier (PA) distortion, I/Q imbalances, self-interference can-
cellation, augmented nonlinear complex LMS (ANCLMS)

1. INTRODUCTION

The full-duplex (FD) technology [1], which aims to obtain
a doubled radio-link data rate by transmitting and receiv-
ing simultaneously and bidirectionally at the same center
frequency, has drawn plenty of attention in recent years.
The minimisation of self-interference (SI), that is, the strong
transmit signal coupled into the receiver (Rx) path, is the key
issue in the design of a FD transceiver. Successful exper-
imental demonstrations [2, 3] have opened the possibilities
for a practical realization of FD technology on the backhaul
sides, and in recent years, more attention has been paid to
the design of mobile-scale FD devices [4, 5], in which the
direct-conversion architecture is of particular attraction due
to its small-size, low-cost and low-energy consumption na-
ture. However, this simple architecture introduces inherent
hardware nonidealities, such as power amplifier (PA) non-
linearity, I/Q imbalances and phase noise, which deteriorate
the SI cancellation performance in a FD direct-conversion
transceiver (DCT).
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In order to maintain a sufficient amount of post-cancellation
signal-to-noise-plus-interference-ratio (SNIR), it is suggested
that the mitigation of SI is firstly performed at the radio
frequency (RF) end, where a further digital cancellation pro-
cedure is adopted to mitigate the SI residual, as well as other
nonidealities, such as I/Q imbalances and phase noise. This
facilitates both channel estimation and signal detection in the
baseband. To this end, a widely linear digital SI canceller was
developed in [4], where the original transmit SI and its self-
image interference, which arises due to the I/Q imbalances in
the DCT [6–8], are jointly mitigated through a least-squares
model fitting. In [5], the augmented complex least mean
square (ACLMS) adaptive filtering algorithm [9, 10] was em-
ployed in a DSP-assisted analog SI cancellation process, and
its theoretical performance was addressed.

However, due to model simplicity, the approaches in [4,5]
were not able to achieve an optimal solution when PA distor-
tion became dominant at the RF end of FD DCTs. To this
end, we first propose an augmented nonlinear CLMS (AN-
CLMS) method for a joint cancellation of both the linear and
nonlinear SI components, as well as their image components,
by virtue of a widely-nonlinear model fitting. Next, to allevi-
ate its potential slow convergence due to the high eigenvalue
spread within the input covariance matrix when the nonlinear
SI components are involved, we further equip the method with
a data prewhitening framework. This is achieved by exploit-
ing the special advantage of the FD mode, namely that the
transmitted SI signal is inherently known to the receiver. The
SI cancellation capability of the proposed approach is vali-
dated by rigorous mean and mean square performance analy-
ses and through representative simulation.

2. WIDELY-NONLINEAR MODELING OF FD DCTS

Within the FD DCT, the SI signal x(n), along with its image
SI and nonlinear components is produced respectively by the
IQ mixer and PA couple into to the receiver path. After the
analog SI cancellation at the RF end, the observed signal d(n)
in the baseband can be expressed in a vectorized form [4]

d(n)=hoHx(n)+goHx∗(n)+hoH
IMDxIMD(n)+goH

IMDx∗IMD(n)

+ v(n)+q(n) (1)
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where x(n) = [x(n), x(n − 1), . . . , x(n − M + 1)]T is
of length M , and the SI component x(n) is considered to
be a proper Gaussian process with zero-mean and variance
σ2
x [11, 12], e.g., a wideband OFDM waveform, and is in-

herently known to the receiver. The vector xIMD(n) =
[xIMD(n), xIMD(n−1), . . . , xIMD(n−N +1)]T is of length
N , the element of which, xIMD(n) is the nonlinear third-
order intermodulated (IMD) SI component caused by PA
distortion, defined as xIMD(n) = k

3/2
TIQ |x(n)|

2
x(n), where

kTIQ is the transmitter mixer gain. Observe that xIMD(n)
is also zero-mean proper, whose variance can be obtained
using the Gaussian fourth order moment factorizing theorem
as σ2

xIMD
= E[|xIMD(n)|2] = 6k3TIQσ

6
x. In order to pre-

cisely describe the prominent nonidealities in the circuit, the
M -tap filters ho and go are used to represent the end-to-end
system impulse responses, which incorporate the effects of
the frequency-dependent I/Q imbalances [13], PA memory
and residual of RF cancellation in the transmit-receiver chain,
for the SI component x(n) and its image x∗(n), respectively.
Similarly, for the IMD SI components xIMD(n) and x∗IMD(n),
we use ho

IMD and go
IMD to present the associated end-to-end

system coefficients, respectively. The thermal noise and the
quantization noise are respectively denoted by v(n) and q(n),
and are assumed to be proper white Gaussian processes with
the respective variances σ2

v and σ2
q , independent of those

linear and nonlinear SI components. From (1), the aim of a
digital SI canceller is to ensure a sufficient level of signal-
to-noise-plus-interference ratio (SNIR) by achieving accurate
estimates of the system coefficients ho, go, ho

IMD and go
IMD.

3. PROPOSED DATA PREWHITENING ASSISTED
ANCLMS BASED SI CANCELLER

The approaches in [4, 5] consider the IMD SI components as
part of the overall noise. However, a more natural and optimal
SI canceller should employ the widely linear auto-regressive
model in (1) which is augmented with the nonlinear SI terms,
particularly when the transmit power is high. For the com-
pactness of analysis, we first reinterpret this model in the aug-
mented manner, to give

d(n) = woHxa(n) + v(n) + q(n) (2)

where xa(n) is a (2M+2N)×1 augmented vector of nonlin-
ear SI, defined as xa(n) = [xT (n), xTIMD(n), xH(n), xHIMD(n)]

T

and wo = [hoT ,hoT
IMD, goT , goT

IMD]
T is the vector of corre-

sponding (2M + 2N) × 1 overall end-to-end system coef-
ficients of the FD DCT. Similar to the augmented CLMS
(ACLMS) based SI canceller in [5], we here aim to estimate
the set of system parameters wo according to the minimiza-
tion of the standard mean square error (MSE) cost function
J(n), defined as

J(n) = E[|e(n)|2] = E[e(n)e∗(n)] (3)

where E[·] is the statistical expectation operation and e(n) is
the instantaneous output error, given by

e(n) = d(n)− wH(n)xa(n) (4)

in which the weight vector w(n) can be updated in the sense
of gradient descent least mean square as

w(n+1) = w(n) + µe∗(n)xa(n) (5)

where µ is the step-size.
Although the proposed SI canceller, referred to as aug-

mented nonlinear CLMS (ANCLMS), is optimal in the sense
of model fitting. It may suffer from a slow convergence due
to the potential high eigenvalue spread of its input covariance
matrix when the higher order nonlinear SI components are
strong. This becomes clear when we examine at the aug-
mented covariance matrix Ra, expressed as

Ra = E[xa(n)xHa (n)] =

[
Ra0 0

0 Ra0

]
(6)

where

Ra0=E[xc(n)xHc (n)]=

[
σ2
xIM ΩT

Ω 6k3TIQσ
6
xIN

]
Ω = [ Rd 0N×(M−N) ]

Rd = E[xd(n)xHIMD(n)] = 2k
3/2
TIQσ

4
xIN

in which xc(n) = [xT (n), xTIMD(n)]
T , and xd(n) = [x(n), x(n−

1),. . . , x(n−N + 1)]T .
Remark 1: Owing to higher-order moments of the SI sig-

nal x(n) involved in (6) due to the nonlinear SI components,
the eigenvalue spread of Ra becomes large when transmit
power σ2

x increases. On the other hand, since x(n) is inher-
ently known to the receiver due to the full-duplex transmis-
sion mode, we are able to improve its slow convergence by
using a simple data prewhitening scheme.

By using the standard eigenvalue decomposition of Ra,
we have Ra = UΛUH , where U is a unitary matrix and Λ =
diag{λ1, λ2, . . . , λ2M+2N} is a diagonal matrix comprising
of the eigenvalues of Ra. Now, before performing the digital
SI cancellation procedure, a whitened input vector xp(n) can
be constructed as xp(n) = Φxa(n), where Φ== [Λ]−

1
2 UH .

This yields the data prewhitening assisted ANCLMS (DPA-
ANCLMS), which can be summarized as

wp(n+1) = wp(n) + µe∗p(n)xp(n) (7)

where the estimation error ep(n) is given by

ep(n) = d(n)− wHp (n)xp(n) (8)

and wp(n) = Φ−Hwa(n).

4. PERFORMANCE ANALYSIS

In this section, rigorous performance evaluations of the pro-
posed DPA-ANCLMS SI canceller are conducted in the mean
and mean square sense.
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4.1. Mean Convergence Analysis

Note that after the data prewhitening procedure, the over-
all optimal system coefficients become wo

p = Φ−Hwo =

Λ
1
2 UHwo. Now, upon introducing the (2M+2N)×1 weight

error vector
w̃p(n) = wo

p − wp(n) (9)

the output error ep(n) in (8) becomes

ep(n) = v(n) + q(n)− w̃Hp (n)xp(n) (10)

and hence from (7), we have

w̃p(n+1)

=[I−µxp(n)xHp (n)]w̃p(n)+µ[v∗(n)+q∗(n)]xp(n)
(11)

Upon taking the expectation E[·] on both sides of (11) and
using the standard independence assumptions among the in-
put xp(n), the thermal noise v(n), and the quantization noise
q(n) [10, 14], we arrive at E[w̃p(n+1)] = (1− µ)E[w̃p(n)],
and hence, the step-size µ which guarantees convergence of
the proposed DPA-ANCLMS for an asymptotically unbiased
estimation should satisfy 0 < µ < 2.

4.2. Mean Square Convergence Analysis

Again by using the standard independence assumptions from
(10), the MSE Jp(n) can be evaluated as

Jp(n)=E[|ep(n)|2]=Tr[Kp(n)]+σ
2
v + σ2

q (12)

where Kp(n) = E[wp(n)wHp (n)] is the weight error covari-
ance matrix and Tr[·] the matrix trace operation. Now, by
multiplying both sides of (11) with wHp (n), and taking the
statistical expectation operation E[·], the evolution of Kp(n)
becomes

Kp(n+1)=Kp(n) + µ2(σ2
v + σ2

q )I2M+2N−2µKp(n)

+µ2E[xp(n)xHp (n)w̃p(n)w̃
H
p (n)xp(n)xHp (n)]

(13)

Upon using the Gaussian fourth order factorizing theorem
[10,14,15] on the fourth term on the right hand side (RHS) of
(13), we have

E[xp(n)xHp (n)w̃p(n)w̃
H
p (n)xp(n)xHp (n)]

=Kp(n) + PpKT
p (n)Pp︸ ︷︷ ︸

K′
p(n)

+Tr[Kp(n)]I (14)

where the complementary covariance matrix [15, 16]

Pp=E[xp(n)xTp (n)] =

[
0 I
I 0

]
For a better understanding of (14), we first decompose KT

p (n)
into four block matrices according to its augmented nature,
given by

Kp(n) =

[
Kpa(n) Kpb(n)

Kpc(n) Kpd(n)

]
(15)

In this way, the second term K′p(n) on the RHS of (14) now
becomes

K′p(n) = PpKT
p (n)Pp =

[
KT
pd(n) KT

pb(n)

KT
pc(n) KT

pa(n)

]
(16)

By comparing (16) with (15), we find that all four block ma-
trices of Kp(n) are transposed in K′p(n), and that the diagonal
matrices Kpa(n) and Kpd(n) are swapped.

The third term Tr[Kp(n)]I on the RHS of (14) can be fur-
ther decomposed as

Tr[Kp(n)]I = 12M+2N1T2M+2Nκp(n) (17)

where 12M+2N denotes a (2M + 2N) × 1 unit vector and
κp(n) is a (2M + 2N) × 1 vector, whose entries are the di-
agonal elements of Kp(n), that is, the variances of the weight
error coefficients, defined as

κp(n)=
[
E[|w̃1(n)|2], E[|w̃2(n)|2], . . . , E[|w̃2M+2N (n)|2]

]T
=[κTp1(n),κ

T
p2(n)]

T (18)

where κp1(n) and κp2(n) are both (M +N)×1 sub-vectors,
which respectively contain the first half and the second half
of the weight error variances. Based on the matrix structure
relationship between Kp(n) and K′p(n), the vector of the di-
agonal elements of K′p(n), that is, κ′p(n), can be achieved by
shifting cyclically each entry in κp(n) by M +N , so that
κ′p(n) =

[
E[|w̃M+N+1(n)|2], . . . , E[|w̃2M+2N (n)|2],

E[|w̃1(n)|2], . . . , E[|w̃M+N (n)|2]
]T

= [κTp2(n),κ
T
p1(n)]

T (19)

Then, based on (13), the evolution of the weight error variance
vector κp(n) becomes[

κp1(n+1)

κp2(n+1)

]
︸ ︷︷ ︸

κp(n+1)

=Fµ

[
κp1(n)

κp2(n)

]
︸ ︷︷ ︸

κp(n)

+µ2(σ2
v+σ

2
q )12M+2N

(20)
where

Fµ=

[
(1−2µ+µ2)IM+N µ2IM+N

µ2IM+N (1−2µ+µ2)IM+N

]
(21)

+µ212M+2N1T2M+2N

In order for the recursion in (20) to converge, all the eigen-
values of the transition matrix Fµ must be less than unity
[14,15,17]. Now, by solving det[Fµ−γiI2M+2N ] = 0, where
det[·] is the matrix determinant operation, and after a few ma-
nipulations, we arrive at

γ1 = 1− 2µ, γ2 = 1− 2µ+ 2µ2,

γ3 = 1− 2µ+ 2(M +N + 1)µ2

where the algebraic multiplicities of γ1, γ2 and γ3 are respec-
tively M + N , M + N − 1 and 1. Since γ3 > γ2 > γ1, the
convergence of κp(n), and hence, the MSE Jp(n) in (12), is
satisfied if γ3 < 1, to yield

0 < µ < 1/(M +N + 1) (22)
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Fig. 1. Comparison of the transient MSE performances of
ANCLMS and DPA-ANCLMS based SI cancellers.

4.3. Steady State Analysis
Assume that step-size µ is chosen such that the mean square
stability of the proposed DPA-NACLMS based SI canceller is
guaranteed, and consider n → ∞ in (12), so that the steady-
state MSE Jp(∞) can be evaluated as

Jp(∞)=1T2M+2Nκp(∞)+σ2
v + σ2

q (23)

where, based on (20), κa(∞) can be derived as

κp(∞)=µ2(σ2
x + σ2

q )(I2M+2N − Fµ)−112M+2N (24)

Upon substituting (24) into (23), we arrive at

Jp(∞) = (σ2
v + σ2

q ){1 + 2µ2(M +N)

+ µ2Tr[F−1µ 12M+2N1T2M+2N ]} (25)

The achievable signal-to-noise-plus-interference ratio (SNIR),
defined as the relative power ratio between the received sig-
nal of interest xSOI(n) and the residual SI ep(n) [4], of the
proposed DPA-ANCLMS based SI canceller can be evalu-
ated as SNIR=pSOI/Jp(∞), where pSOI is the power of the
xSOI(n).

5. SIMULATIONS
Simulations were conducted in the MATLAB programming
environment to verify the benefits of the proposed DPA-
ANCLMS based digital SI canceller for FD DCTs in the
presence of PA nonlinear distortion and frequency-dependent
IQ imbalances. The simulated waveforms of the transmit SI
x(n) and the received signal of interest xSOI(n) were con-
sidered to be generated from wireless LAN (WLAN) 802.11
standards compliant OFDM transmission systems. The ana-
log SI attenuation of the FD DCT was considered at the level
of 50 dB, and the cancellation error was subject to a 3-tap
static Rayleigh distribution [18]. The frequency-dependent
transmitter and receiver I/Q imbalance were both modeled as
2-tap static FIR filters [13], so that M = 5 and N = 4. The
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Fig. 2. Comparison of the theoretical and simulated steady-
state mean square performances, in terms of achievable
SNIRs, of DPA-ANCLMS based SI canceller.

powers of the thermal noise v(n) and the quantization noise
q(n) were respectively σ2

v = −48 dBm and σ2
q = −60 dBm.

Typical values for other system parameters were chosen ac-
cording to the specifications in [4].

Fig. 1 shows the theoretical convergence behavior of
Jp(n), evaluated by using (12) and (13), when DPA-ANCLMS
with a step-size µ = 0.05 was applied for a digital SI atten-
uation on the considered FD DCTs. It accurately describes
the empirical MSE evolution in both the transient and steady-
state stages. We also observed that the prewhitening scheme
enabled a speed up in the convergence due to the stabilized
eigenvalue spread in the transformed input covariance ma-
trix, e.g., the original ANCLMS required 25000 iterations to
converge, while it took 3000 iterations for DPA-ANCLMS.
In Fig. 2, the digital SI cancellation performances of DPA-
ANCLMS, measured in terms of the achievable SNIRs, were
investigated against different levels of the transmit powers.
Observe the excellent agreement between the simulated re-
sults and their theoretical evaluations. Fig. 2 also reveals
that a smaller step-size µ enabled better performance for the
proposed digital SI canceller but this was achieved at a cost
in convergence speed.

6. CONCLUSIONS
We have introduced a data prewhitening assisted augmented
nonlinear complex least-mean-square based digital self-
interference (SI) canceller for full-duplex direct-conversion
transceivers in the presence of PA distortion and frequency-
dependent I/Q imbalances. This has been achieved by using a
widely-linear model fitting and exploiting the known statistics
of the SI signal to accelerate its iterative mitigation process.
The SI cancellation capabilities of the proposed model have
been rigorously justified in both the transient and steady-state
stages. Simulations on wireless local area network standard
compliant waveforms support the analysis.
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