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ABSTRACT

Diffusion adaptation is an efficient strategy to perform distributed
estimation over networks with streaming data. Existing diffusion-
based estimation algorithms require the knowledge of analytical
forms of the cost functions or their gradients associated with agents.
This setting can be restrictive for practical applications where gradi-
ent calculation is difficult or systems operate in a black-box manner.
Motivated by the advance of the zeroth-order (gradient-free) opti-
mization, in this work we propose the zeroth-order (ZO) diffusion
strategy using randomized gradient estimates. We also examine the
stability conditions of the proposed ZO-diffusion strategy. Simula-
tions are performed to examine properties of the algorithm and to
compare it with its non-cooperative and stochastic gradient counter-
parts.

Index Terms— Distributed estimation, online learning, diffu-
sion adaptation, zeroth-order optimization, stochastic optimization.

1. INTRODUCTION

Distributed adaptation over networks allows a collection of inter-
connected nodes to perform estimation tasks from streaming mea-
surements. For online parameter estimation, among various strate-
gies [1–7], diffusion adaptation [6, 8] is an efficient strategy that is
particularly attractive due to its enhanced adaptation performance
and wider stability ranges [9]. Diffusion-based algorithms have been
extensively studied, in respect of adaptation algorithms on agents,
including diffusion least-mean square algorithm (LMS) [10,11], dif-
fusion affine projection algorithm (APA) [12], diffusion Kalman fil-
tering [13, 14], diffusion recursive least-squares (RLS) [15], and in
respect of cooperation strategies among agents [16, 17].

An inspection on existing diffusion adaption algorithms shows
that they all require analytical forms of the cost functions associated
with the agents during the optimization process. In many practi-
cal scenarios, this requirement can be restrictive since the explicit
expression for a cost can be difficult to obtain, or the associated gra-
dient can be difficult to compute. For example, in bandit optimiza-
tion [18], a player receives partial feedback in terms of loss function
values revealed by her adversary, and aims to determine the best
decision based only on the observed function values. Similarly, in
simulation-based optimization problems, there exist black-box com-
putation models that only provide limited functional characteristics
of the loss function, where explicit function expressions and their
gradients are unavailable [19, 20]. In attacking black-box machine
learning models, only the function values (e.g., prediction results)
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are provided [21]. Moreover, in some optimization tasks, acquiring
the gradient information is difficult due to its complex form, e.g.,
involving high dimensional matrix inversion in problems of experi-
mental design [22]. These facts motivate us to design gradient-free
(namely, zeroth-order) optimization strategies.

Recently, zeroth-order optimization has received great atten-
tion by approximating the full gradient via a random gradient
estimate [18, 23–26]. In our previous work [27], we derive ZO-
Online ADMM by using such a random gradient estimate. In
this work, we consider the problem of distributed estimation over
networks with online streaming data, under a general scenario in
which an agent only has access to the instantaneous cost function
value. We apply zeroth-order gradient estimator to the adaptation
step of the diffusion-based strategies, and propose the adapt-then-
combine (ATC) ZO-diffusion adaption algorithm. We also provide
the mean and mean-square stability conditions of the ATC ZO-
diffusion algorithm. Finally, simulations are performed to examine
convergence properties of the algorithm, and to compare it with its
non-cooperative counterpart and the stochastic gradient counterpart.

Notation. All vectors are column vectors denoted by boldface
small letters x, and boldface capital letters X denote matrices. The
superscript (·)> represents the transpose of a matrix or a vector.
Mathematical expectation is denoted by E{·}. Identity matrix of size
N×N is denoted by IN .We denote byNk the set of node indices in
the neighborhood of node k, including k itself. The operator col{·}
stacks its vector arguments on the top of each other to generate a
connected vector. The operator bdiag{· · · } forms a block diagonal
matrix with its arguments. The other symbols will be defined in the
context where they are used.

2. DIFFUSION ADAPTATION FOR DISTRIBUTED
ESTIMATION

2.1. Modeling assumptions

We consider a connected network composed of N nodes. The prob-
lem is to estimate, in a collaborative and distributed manner, an
M × 1 column vectorw? that minimizes a global cost of the form

J glob(w) =
N∑

k=1

Jk(w) (1)

with Jk(w) denoting a real-valued function accessible to node k
that is assumed to be differentiable and strictly convex. In this work,
we focus on the important case where all Jk(w) have the same min-
imizerw?. This setting is referred to as single-task problems where
nodes in a network need to work cooperatively to attain a common
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object [28], while associating different minimizers to each node is
a more generalized setting that could be studied via estimation over
multitask networks [16].

2.2. Diffusion adaptation for distributed estimation

Among the several existing strategies for achieving the minimizer
of (1), diffusion adaptation is an efficient approach that is particu-
larly attractive due to its enhanced adaptation and performance and
wider stability ranges. Diffusion strategies can be subdivided into
two forms: the adapt-then-combine (ATC) and the combine-then-
adapt (CTA) strategies. Let non-negative coefficients c`k and a`k
be the (`, k)-th entries of a right-stochastic matrix C and a left-
stochastic matricesA such that

C1N = 1N , A
>1N = 1N (2)

and
c`k = 0, a`k = 0 if ` /∈ Nk. (3)

There are several ways to select the coefficients c`k and a`k such as
using the averaging rule or the Metropolis rule. The ATC diffusion
strategy is given by iterating the following two steps:

ψk,n = wk,n−1 − µk

∑
`∈Nk

c`k∇wJ`(wk,n−1) (4)

wk,n =
∑
`∈Nk

a`kψ`,n (5)

on each node k. The parameter µk in (4) denotes the positive step
size on node k. In this setting, evaluating the gradient of J` at
wk,n−1 requires raw data exchange among agents. A simplified set-
ting with C = IN leads to the ATC diffusion strategy without raw
data exchange:

ψk,n = wk,n−1 − µk∇wJk(wk,n−1) (6)

wk,n =
∑
`∈Nk

a`kψ`,n (7)

Note that the diffusion adaptation algorithms (4) and (5), (6) and (7)
require the evaluation of the gradient of Jk.

3. ZEROTH-ORDER DIFFUSION ADAPTATION

Using the gradient of Jk, either in the exact form or in an stochastic
form, relies on the fact that the analytical expression of Jk is avail-
able and the associated gradient can be calculated with affordable
complexity. These assumptions can be violated in some scenarios,
and this motivates us to propose the zeroth-order diffusion strategy
via randomized gradient estimator.

3.1. Randomized gradient estimator

A randomized gradient estimator has been used to estimate the gradi-
ent of a smooth cost function in many types of zeroth-order optimiza-
tion algorithms [23–26]. In a similar manner, we consider to apply
such a strategy to the diffusion adaptation. This strategy replaces
the gradient g of a function f defined on IRM with a randomized
gradient estimate involving two function evaluations:

ĝf (y;z, ε) =
f(y + εz)− f(y)

ε
z (8)

where z ∈ IRM is a random vector drawn from a distribution z ∼ D
with ED{zz>} = IM , and ε is a small positive smoothing constant.
The rationale behind the estimator (8) is that ĝ is an unbiased esti-
mator of the directional derivative when the smoothing parameter ε
is taken close to zero [23].

3.2. Zeroth-order diffusion adaptation

We now propose zeroth-order diffusion adaptation strategy. The ma-
jor way to achieve the zeroth-order diffusion adaptation is to use the
zeroth-order gradient estimator as introduced in (8).

We assume that at instant n, node k has only access to the instan-
taneous value of the cost function Jk. This instantaneous function is
denoted by Jk,n(w) and parameterized by a random variable xk,n,

Jk,n(w) = Jk(w;xk,n) (9)

An example of this setting is the stochastic cost function with

Jk(w) = Ex{J(w;xk,n)} (10)

where Ex{·} takes the expected value of its argument with respect
to the random variable x.

Following [23,29], we assume the following conditions for prob-
lem (1):
A.1: Jk,n is strictly convex, twice differentiable and Lipschitz con-

tinuous with E{‖∇Jk,n(w)‖2} ≤ c1 <∞ for all k.
A.2: The gradient of Jk,n is Lipschitz continous with parameter

Lk, equivalently∇2Jk,n ≤ LkIM .
A.3: The random vector in (8), for z ∼ D on IRM , the quantity

M(D) =
√

E{‖z‖6} is finite, and there is a function s :
IN → IR+ such that E{‖〈a,z〉z‖2} ≤ s(M)‖a‖2 for all
a ∈ IRM .

Now applying the random gradient estimator (8) to the proto-
types of diffusion adaptation steps (4) and (5), and considering that
we only have access to instantaneous values of the functions Jk,
yielding the zeroth-order diffusion adaptation

ψk,n = wk,n−1 − µk

∑
`∈Nk

c`k ĝJ`,n
(wk,n−1;z`,n, ε`,n) (11)

wk,n =
∑
`∈Nk

a`kψ`,n (12)

If the gradient estimators from the neighbors are not considered, i.e.,
by settingC = I , we have the following algorithm:

ψk,n = wk,n−1 − µk ĝJk,n
(wk,n−1;zk,n, εk,n) (13)

wk,n =
∑
`∈Nk

a`kψ`,n (14)

3.3. Minibatch strategy

The use of zeroth-order gradient estimates makes the convergence
rate dependent on the dimension of optimization variables [23, 27].
In order to improve the convergence property of ZO-diffusion adap-
tation, we propose to use the minibatch strategy motivated by first-
order online learning algorithms [29–31]. Instead of using a single
sample as in (8), the average of q random sub-samples {zt,i}qi=1 are
used for gradient estimation

ĝf (y; {zi}qi=1, ε) =
1

q

q∑
i=1

f(y + εzi)− f(y)
ε

zi. (15)

We will empirically show that the convergence property of ZO-
diffusion adaptation can be largely improved as the minibatch size q
increases.
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4. STABILITY ANALYSIS

In this section, we will examine the stability conditions of the ZO-
diffusion adaptation. Due to the space limitation, we focus on the
case without exchanging gradient estimators, namely, using itera-
tions defined in (13) and (14). Our analysis can be extended to iter-
ations (11) and (12) with minor changes. We denote the difference
between the optimum w?

k and the instantaneous estimate wk,n and
intermediate estimate ψk,n respectively by:

w̃k,n = w?
k −wk,n (16)

ψ̃k,n = w?
k −ψk,n (17)

We collect information from across the network into block vectors
and matrices. Let us denote by w̃n the block weight error vector at
instant n of size MN × 1, that is

w̃n = col{w̃1,n, . . . , w̃N,n} (18)

Subtracting the optimum w?
k from both sides of (11), the error up-

date data relation is given by

ψ̃k,n = w̃k,n−1 + µk ĝk,n(wk,n−1) (19)

where we use ĝk,n(·) = ĝJk,n
(·;zk,n, εk,n) for short. We then

write the gradient estimator ĝJk,n
(·) atw′ in form of

ĝk,n(w
′) = ∇wJk(w

′) + vk,n(w
′) (20)

namely, we model the inaccuracy in a gradient vector with some
gradient noise component vk,n(·).

Lemma 1 Givenw′, εk,n and zk,n ∼ D:

Ez{ĝk,n(w
′)}=∇wJ`(w

′) + εk,nLkν(w
′, εk,n) (21)

Ez{‖ĝk,n(w
′)‖2}≤ 2s(M)‖∇wJ`(w

′)‖2+1

2
ε2
k,nL

2
kM(D)2

(22)

with ‖ν(w′, βn)‖ ≤ 1
2
Ez{‖z‖3}.

The above results are directly obtained from [23, Lemma 1]. We
see from Lemma 1 that the zeroth-order estimator of the gradient
is biased. However, when the smoothing parameter ε`,n is small
enough, ĝk,n(w

′) becomes an unbiased estimator of ∇wJ`(w
′).

Decomposition (20) and Lemma 1 directly lead us to the fact that
the norm of the gradient is bounded, i.e.,

E{‖vk,n(w
′)‖}2 ≤ E{‖vk,n(w

′)‖2} ≤ τ (23)

with τ being a constant dependent of s(M), c1, M(D). Further-
more, for the twice-differentiable function, we have

∇wJk(wk,n−1) (24)

=∇wJk(w
?
k)−

[ ∫ 1

0

∇2
wJk(w

?
k − tw̃k,n−1)dt

]
w̃k,n−1 (25)

∆
=−Hk,n−1w̃k,n−1 (26)

by noticing the fact∇wJk(w
?
k) = 0 and introducing the symmetric

random matrix Hk,n−1 =
∫ 1

0
∇2

wJk(w
? − tw̃k,n−1)dt. Under

A.2, it is easy to verify that [8]

Hk,n−1 ≤ LkIM (27)

4.1. Mean stability analysis

With the expression of∇wJk(wk,n−1), weight error recursion (19)
can then be written withHk,n−1 by:

ψ̃k,n = (IL − µkHk,n−1)w̃k,n−1 + vk,n(wk,n−1) (28)

Defining the matrix A = A⊗ IM , the network weight error vector
E{w̃n} evolves according to

E{w̃n} = BE{w̃n−1}+ E{vn−1} (29)

where we define

Bn = A>(INM − µkbdiag{H1,n−1, . . . ,HN,n−1}) (30)

and B = E{Bn}. From (23) we know that E{vn−1} is bounded,
thus the stability of (29) is governed by the stability ofB, namely,

ρ
(
A>(INM − µkbdiag{E{H1,n−1}, . . . ,E{HN,n−1}}

)
< 1.

(31)
where ρ(·) denotes the spectral radius of a matrix. Considering prop-
erties of A> [6] and (27), this requirement leads to the condition:

µk <
2

Lk
. (32)

4.2. Mean-square stability analysis

We then perform the mean-square stability analysis relying on a set
of inequality recursions that will enable us to bound the steady-state
mean-square-error. Equating the squared Euclidean norms of both
sides of (28), applying the expectation operator, we have

E{‖ψ̃k,n‖
2} = E{‖w̃k,n−1‖2B2

k,n−1
}+ µ2

k E{
∥∥vk,n(w̃k,n−1)

∥∥2}

+ µkE{w̃>k,n−1Bk,n−1vk,n(w̃k,n−1)}
(33)

withBk,n−1 = IM −µkHk,n−1. Using Cauchy-Schwarz inequal-
ity and the bound in (23), we have an upper bound of E{‖ψ̃k,n‖2}

E{‖ψ̃k,n‖
2}

≤ E{‖w̃k,n−1‖2B2
k,n−1

}+ µ2
kτ + µk

√
τE{‖w̃>k,n−1Bk,n−1‖}

≤ γ2
kE{‖w̃k,n−1‖2}+ µ2

kτ + µkγk
√
τE{‖w̃k,n−1‖}

(34)

where γk = |1−µkLk|, note that E{‖w̃k,n−1‖} is bounded with the
mean stability condition (32). Subtract w?

k from both side of (14),
and note that A is a left-stochastic matrix, the weight error vectors
w̃k,n and ψ̃k,n are related by w̃k,n =

∑
`∈Nk

a`k ψ̃`,n. Further
considering that ‖ · ‖2 is a convex function, by Jensen’s inequality
and taking expectation we obtain

E{‖w̃k,n‖2} ≤
∑
`∈Nk

a`k E{‖ψ̃`,n‖
2}. (35)

We then introduce the following network mean-square-error vectors:

ζn =
(
E‖w̃1,n‖2, . . . ,E‖w̃N,n‖2

)> (36)

Combining all three inequalities leads to

ζn = A>diag{γ2
1 , . . . , γ

2
N}ζn−1 +A>pn−1 (37)

with pn−1 denoting the bounded vector whose entries are given by
the last two terms in (34). For such a recursion with a bounded driven
term, the stability is governed by γk < 1, which also leads to

µk <
2

Lk
. (38)
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Fig. 2. Network topology, input variances, and noise variances.

5. SIMULATIONS

We now report simulation results to illustrate the properties of the
proposed ZO-diffusion adaptation algorithm. All nodes were initial-
ized with zero parameter vectorswk,0 = 0. Simulation curves were
obtained by averaging over 100 trials.

Consider the network of 16 agents depicted in Fig. 2(a). We
suppose agent k is associated with the local cost Jk(w) in form of

Jk(w) = E{(dk,n −w>xk,n)
2} (39)

where {xk,n} are a random vectors of length M , and dk,n =
x>k,nw

? + zk,n where zk,n are a zero-mean Gaussian noise with
variance σ2

z , independent of any other signals. It is clear that (39) is
the mean-square error criterion with regressor xk,n and dependent
variable dk,n. We use (39) as an illustrative example by con-
sidering that we only have access to instantaneous function value
Jk,n = (dk,n−w>xk,n)

2, without knowledge of {wk,n, dk,n}. To
perform simulations, the system order is set toM = 50. The regres-
sion inputs xk,n are zero-mean M × 1 random vectors governed by
a Gaussian distribution with covariance matrices Rx,k = σ2

x,k IM .
We set the unknown variable vectorw? to be a fixed set of variables
sampled from N (0, 1). For the combination step, we use a uniform
combination matrix A such that a`k = 1

|Nk|
, and set C = IN for

simplicity. For generating random gradient estimators, the random
vector z is sampled fromN (0, IM ).

In order to examine the effects of parameters in the ZO-
diffusion adaptation algorithm, we vary the gradient estimate pa-
rameter ε and minibatch parameter q. We first test ε with values
{10−1, 10−2, 10−3, 10−4, 10−5} with fixed q = 10, and then text
q with values 5 to 50 with increments of 5, using fixed ε = 10−2.
All these tests are with a fixed step size µk = 0.01 for all nodes.
Fig. 1(a) shows that the mean-square deviation (MSD) convergence
behavior with varied ε. It is observed that MSD learning curves
have almost the same convergence rates and steady-state perfor-
mance with all these values, except for a large value ε = 0.1. This
result indicates that the convergence property is not significantly
varied with a reasonably small ε. Fig. 1(b) shows that ZO-diffusion
adaptation achieves a better steady state performance with an in-
creased minibatch size q, since a larger q yields a better estimate of
the gradient.

We then compare the ZO-diffusion adaptation strategy with its
non-cooperative counterpart, and also with the diffusion LMS al-
gorithm. In this simulation, we set q = 20 and ε = 0.01 for
zeroth-order strategies. We set step size µk = 0.002 for all ZO-
type algorithms, and µk = 0.01 for diffusion LMS. MSD learning
curves of these algorithms and settings are shown in Fig. 1(c). The
cooperative ZO-diffusion adaptation has significant advantage over
its non-cooperative counterpart in convergence property. Diffusion
LMS exhibits a better performance while it requires the knowledge
of analytical form of the cost.

6. CONCLUSION AND PERSPECTIVE

In this paper, we considered a network operating with applications
where the analytical forms of cost functions are not accessible. In or-
der to perform distributed estimation, we introduced the zeroth-order
gradient estimator into the diffusion-based adaptation strategy, and
proposed a combine-then-adapt ZO-diffusion algorithm. Stability
conditions were established for the algorithm. Simulations validated
the proposed strategy. Our future work will include analyzing the
convergence rate of ZO-diffusion algorithm, and considering costs
with extra optimization constraints.
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