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ABSTRACT

Many threats in the form of human actions (terrorist attacks,
military actions, etc.) can be modeled by someone with rel-
evant expert knowledge. A model would be a hypothesis or
guess as to how a threat would develop and what kind of ob-
servable evidence it would produce along the way. We present
a method of stochastically modeling these types of processes
using Hidden Markov Models (HMMs). We then present a
detection scheme using a Bernoulli Filter – an increasingly
popular application of random finite set statistics

1. BACKGROUND

We aim to build a stochastic model of some “interesting” or
suspicious pattern of human activity. It is reasonable to as-
sume that a significant threat would involve preliminary ac-
tivities in the form of transactions (communication, travel, fi-
nancial transactions, etc.) between entities (people, places,
objects) that are involved in the threat. Therefore, the threat
can be modeled as a sequence of transactions between an a
priori unknown set of involved entities, starting with plan-
ning steps and culminating at some ultimate goal (attack, suc-
cessful maneuver, etc.). We assume that some of the prelimi-
nary transactions would be observed by thorough intelligence
surveillance, along with large amounts of clutter – transac-
tions between entities that play no part in the threat. The
challenge we address here is, given such a threat model and a
constant stream of intelligence data that is mostly clutter, we
want to detect if and when the threat process is present, get an
idea of which entities are involved, and ideally tell what stage
the threat process is in.

A natural choice for modeling such a process is a Hidden
Markov model (HMM). A HMM is a Markov process – dis-
crete in this case – whose states are not directly observable,
but have some probabilistic relationship to what is observed.
In this case the states would be stages in the threat process,
which can’t be seen but are expected to be related to the ob-
servations. General tutorials on HMMs can be found at [5],
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[6]. Some previous work has been done on modeling these
particular types of threats with HMMs in [8].

Since a modeled threat may or may not be present, a
Bernoulli filter lends itself well to the detection problem. The
Bernoulli filter uses a random finite set (RFS) framework
which maintains a target state estimate that is weighted by the
target’s probability of existence. A method of tracking threat
models using a Bernoulli Filter can be found in [3].

There are two main contributions in this paper. First,
we have revised the structure of the HMM transition matri-
ces from previous work. In [8],[3] the observations from the
threat process are emitted when a transition occurs from one
state to the next, and clutter was emitted any time a state self-
transitioned. This reasonably models the real life scenario
where we receive relevant observations separated by long pe-
riods of clutter. Here we have introduced a different model
that achieves much the same effect. In our Markov model
structures there are states that can not self-transition and emit
the relevant “true” observations. These states are separated by
states that have a high chance of self-transitioning and emit
clutter observations.

Second, instead of modeling each observation as a single
symbol, we consider an observation to be a single transaction
symbol connecting two entity symbols. In order to use this
model, we have assumed some total population of entities in
the observation space that are each uniquely identifiable. This
allows us to approach the detection problem as a problem of
finding some subset of the total entity population that is per-
forming an anomalous sequence of actions, which is a more
specific target than just a sequence of actions. Each entity is
given a weight or probability of involvement (0 is definitely
not involved, 1 is definitely involved). It is initially assumed
that we have no prior knowledge about the entities’ weights.
We present a method of updating these weights so that the fil-
ter acquires more knowledge about the entities as the process
progresses which in turn helps with detection. Qualitatively
speaking, we use past observations to adjust how “interesting”
an entity is, then current observations that involve “interest-
ing” entities are taken more seriously.
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2. MODELS

2.1 Population Model

We define an array of all entity identities E = {e1, e2, ..., eNe}
of size Ne. It is implied that the entities are human actors,
but they could just as easily be locations or objects. For
each observation, a pair of these entities will be linked by a
transaction. This assumes that all entities are uniquely iden-
tifiable and will be correctly identified when observed. This
requirement could be relaxed in future work if a feature based
observation model [8] is used.

With all entities identified, we assign to each an indicator
Bernoulli random variable where a value of 1 means the entity
is involved in the threat and 0 means it is not involved. Let
us denote the distributions (probability of value 1) of these
indicator random variables as K = [k1, k2, ..., kNe ].

2.2 Observation Model

We define a set Z = {z1, z2, ..., zNz , z∅} of all possible trans-
action types including a null observation type z∅ that signifies
an unintelligible or blank observation. This should be an ex-
haustive set of the transaction types from clutter and threat
processes. We model the current observation Ot with the
structure shown in Figure 1, where zt ∈ Z is some trans-
action linking entities {eta, etb} ⊂ E .

It is helpful to think of our observation model as an at-
tempt to give structure to simple sentences where Z is the set
of all possible verbs and E is the set of all possible nouns. In
this work we assume that necessary preprocessing of data can
be done to fit observations roughly into the framework of this
model. This is relatively simple in some cases; e.g. Person A
places a call to Person B, or Person X gets on a flight to City
J. However, fitting data to this model can be harder in some
cases; e.g. Person M posts suspicious social media content,
or there is a large crowd of people at Location D.

eta etb

zt

Figure 1: Structure of an observation

2.3 Clutter Process Model

A clutter process λcl is modeled as a single state HMM that
emits transaction types based on some modeled clutter distri-
bution p(z|λcl). This distribution should give some weight
to every transaction type in Z including the null observation.
The clutter process also samples two entities uniformly with
replacement from E to be linked by the transaction.

2.4 Threat Process Model

One practical modeling detail we must take into considera-
tion is that even if the modeled threat exists, the observations
due to our target (“true” observations) will be very sparse –
separated by long periods of time where we receive only clut-
ter. This is modeled in [8] and [3] by requiring the target pro-
cess to output true observations only when there is a transition
from one state to the next, and output clutter when states self
transition. While this approach is reasonable, it is unneces-
sarily complicated to implement. For this work we have mod-
ified the model of the state transition structure of the HMM
to be as shown in Figure 2. Let us denote the set of all light
colored states as C, and the set of all shaded states as T . All

x1 x2 x3 x4 x5 x6 x7 ...

Figure 2: Example Markov chain

states in C are considered clutter states and are given a very
high probability of self transitioning. These states model the
long wait periods where the target is not emitting any obser-
vations. The states in T are considered the target states and
do not self transition so are only visited once. These states
provide the sparse “true” observations that are produced by
the target.

This structure allows us to treat the threat model as a typ-
ical HMM, eliminating the need to code a transition based
model as in [8], [3]. The trade-off is a larger HMM state tran-
sition matrix since there are essentially twice as many states
as there are in the transition based model. Note that the single
path “daisy chain” transition structure is used in this writing
for the sake of simplicity, and [3] shows that this structure is
indeed the most detectable. But it is not a strict requirement
in this work. The transition structure is allowed to split into
parallel paths. However, we do require that each of the target
states are separated by at least one clutter state.

The state transition matrix A defining the structure in Fig.
2 would have the general form

A =



0 1 0 ...
0 p1 (1− p1) 0 ...
... 0 0 1 0 ...

... 0 p2 (1− p2) 0 ...
... 0

. . . . . .


where each row is a transition probability distribution for the
corresponding state. In other words, the element Ai,j is the
probability of transitioning from state i to state j. Notice that
the rows corresponding to target states have 0 on the diag-
onal and 1 on the superdiagonal, meaning they do not self-
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transition and transition immediately to the next state. The
rows corresponding to clutter states have some self-transition
probability pi which is not necessarily the same for all clutter
states but is set to be very high (≈ 0.999).

For the simplest case of one possible transaction type for
each target state, the emission matrix B that models the rela-
tionship between the states and observed transaction types in
Z will have the general form

B =



0 1− p∅ 0 ... 0 p∅
pcl(z1) pcl(z2) pcl(z3) ... pcl(zM ) p∅

0 0 0 ... 1− p∅ p∅
pcl(z1) pcl(z2) pcl(z3) ... pcl(zM ) p∅
1− p∅ 0 0 ... 0 p∅

...
...

...
...

...


where each row is the emission distribution over Z for the
corresponding state and must sum to 1.

The observations emitted by target states draw entities in-
dependently but exclusively from some unknown population
subset I ⊂ E . Each entity in I is defined as being involved
in the threat we are modeling. The algorithm requires an es-
timate of how many entities will be involved in a given threat
Ninv , but can assume no prior information on the identities.

3. BERNOULLI FILTER

We now present a method of detecting and tracking the threat
with a Bernoulli filter while simultaneously updating the in-
volvement probabilities in K. For now, we restrict our discus-
sion to the case where there is either one target or no target.
Ongoing research is exploring ways to detect multiple targets.
A general tutorial on Bernoulli filters can be found in [7]. An
BF implementation for our particular purpose is presented in
[3] using different modeling techniques.

The Bernoulli filter treats the target as a random finite set
S which is either empty ∅, or it has cardinality 1 and takes
on the value of the current HMM state. We can think of the
RFS S as taking on values in the augmented state space S ∈
{x1, x2, ..., xNx , ∅}. The BF outputs an estimated pmf f(S)
over this state space. The output can also be thought of as
a pmf over the states of the target {x1, x2, ..., xNx

} that is
weighted with a probability of target existence q, where (1−
q) is the probability that the RFS is empty.

We must choose as parameters the probability of target
birth pb and the probability of target survival ps from one time
step to the next. A target birth distribution f b(x) must also be
chosen, which in this case should only give weight to the first
state in the transition structure (we assume the process always
starts at the beginning).

3.1 Dynamics

The dynamics of the RFS are modeled as a Markov process
completely parameterized by the probability of target birth

pb, the probability of target survival ps, the birth distribution
f b(x), and the HMM state transition matrix A. The transition
matrix for S is

Π =

[
ps ·A ~1 · (1− ps)

pb · f b(x) (1− pb)

]
(1)

where ~1 is a column vector of ones.

3.2 Update Step

Say at time t we are given the predicted pmf based on all
previous observations ft|t−1(S|Ot−1) and the current obser-
vation Ot. We want to update the pmf based on the current
observation. The update is given by

ft|t(S|Ot) =
ϕ(Ot|S)ft|t−1(S|Ot−1)∑
S ϕ(Ot|S)ft|t−1(S|Ot−1)

(2)

where the state dependent observation likelihood is

ϕ(Ot|S) =

{
p(zt|λcl)( 1

Ne
)2, if S ∈ {C, ∅}

p(zt|S)k(ea)k(eb)(
1

Ninv
)2, if S ∈ {T }

(3)
The term p(zt|S) is the state dependent probability of the cur-
rent transaction type which is readily available from the emis-
sion matrix of the target HMM. And k(ea) and k(eb) are the
involvement probabilities of the two observed entities.

3.3 Prediction Step

The predicted pmf for time t+ 1 is based solely on the mod-
eled dynamics of the RFS S. In a programmed implementa-
tion where the updated pmf is a column vector ~ft|t(S|Ot), the
predicted pmf is also a column vector given by multiplication
with the transpose of the transition matrix in (1).

~ft+1|t(S|Ot) = ΠT ~ft|t(S|Ot) (4)

This prediction is then used in (2) at the next time step.

4. INVOLVEMENT PROBABILITIES

The vector K contains the probability of involvement (weight)
for each entity. Since these weights are the distributions of
a set of Bernoulli random variables, it is reasonable for K
to sum to a value close to the expected number of involved
entities Ninv . We model the underlying entity process as
an array of independent indicators over the entire population
where the expected number of “on” indicators at any time is
Ninv , and the expected amount of time an indicator stays on
is the expected target lifetime. If we take

C =
Ninv

Ne
(5)
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to be the fraction of population expected to be involved, and
D to be the expected target lifetime, the desired behavior is
modeled by a two state Markov chain with transition matrix

H =

 1− 1
D

C
D(1−C)

1
D 1− C

D(1−C)

 (6)

where the first state is the involved or “on” state and the sec-
ond is the uninvolved or “off” state. In simulations, this pro-
cess does not govern the true entity involvements; instead an
involved set is chosen at the time of target birth and remains
the same throughout. However, the stationary distribution for
the “on” state is C which is also used as the initial weight for
all entities. Then the two cases in (3) differ only by the same
factor that the terms p(zt|λcl) and p(zt|S) differ by.

We have devised a method to update the entity weights in
K based on the current estimate given by the Bernoulli filter.
For the current time step, the pmf over S is first updated using
(2) and the prior entity weights. Then the weights of the two
currently observed entities are updated using the formula

k′(ei) =

k(ei)
(

1
Ninv

∑
s∈T

f(s) + 1
Ne

∑
s∈C,∅

f(s)
)

(
k(ei)

1
Ninv

∑
s∈T

f(s)
)

+
(

1
Ne

∑
s∈C,∅

f(s)
) , i = a, b

(7)
where f(s) is shorthand for the value of the updated pmf cor-
responding to state s and k(ei) is the prior weight of entity
i. The entities’ updated weights are proportional to how “in-
teresting” their current transaction is and how often they have
been linked to “interesting” transactions in the past.

Then H is applied independently to every entity weight
including the two current ones updated by (7). Since we are
only interested in the weights and not their complements, this
update amounts to

k̂(ei) =

(
1− 1

D

)
k(ei) +

C

D(1− C)
(1−k(ei)), ∀i (8)

5. EXPERIMENTAL RESULTS

Here we adopt Quickest Detection which is usually used to
evaluate the performance of edge detectors or communica-
tion system filters [4]. The “signal” we are working with is
the probability of target existence output by the BF. Quick-
est detection quantizes the incoming signal – in this case the
probability range 0 to 1 is broken into 100 possible levels.
Then each level is treated as if it is the detection threshold.
For each threshold level, we mark on the vertical axis the av-
erage time interval T̄ between points where the threshold is
exceeded while the filter is run on only clutter. The horizon-
tal value of the data point is the average delay to detection
D̄ when the target is present. This is the average time delay
between true target birth time and the time that the existence

probability exceeds the threshold. These results are obtained
over 2000 Monte Carlo runs (2000 evolutions of the target).

Experimental results are given for a 37 state daisy chain
target HMM with an average lifetime of 1550 time steps. This
implies that we receive at most 19 observations from our tar-
get and roughly 1500 clutter observations over the target’s
lifetime. Quickest detection results are given in Figure 3. The
probability of target existence for a single instance of the tar-
get is plotted in Figure 4. The use of entity weights gives a
significant improvement in both cases.
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Figure 3: Quickest detection data for the experimental model.
Blue data shows results when entity weights are used. Orange
results are without. The red line marks the expected target
lifetime, past which D̄ is somewhat meaningless.
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Figure 4: Probability of target existence versus time for one
instance of the target. Target start and end times are marked
with green and red respectively. Solid blue data shows re-
sults when entity weights are used. Dashed orange results are
without.
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