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ABSTRACT

We propose a novel automatic shrinkage tuning technique for the

adaptive proximal forward-backward splitting (APFBS) algorithm.

The shrinkage tuning aims to choose an appropriate value of the

shrinkage parameter and achieve minimal system mismatch as possi-

ble. The system mismatch is approximated based on time-averaged

second-order statistics. Numerical examples show that the proposed

method achieves performance fairly close to that with a manually

chosen shrinkage parameter for colored input signals at some signal

to noise ratio (SNR).

Index Terms— Sparsity-aware adaptive filter, automatic param-

eter tuning, adaptive proximal forward-backward splitting algorithm

1. INTRODUCTION

In recent years, it has been known that exploiting sparsity of a target

system leads to higher accuracy in adaptive filtering. The sparsity of

the system to be estimated has been observed and exploited in many

applications including echo cancellation, active noise control and

network channel estimation [1–15]. For a linear model, the Normal-

ized Least Mean Squares (NLMS) algorithm [16] is one of the major

adaptive filtering algorithms and its many sparsity-aware versions

have been proposed [1–8]. Among them, we focus on the Adap-

tive Proximal Forward-Backward Splitting (APFBS) algorithm [6]

in this paper. APFBS is an adaptive scheme which minimizes the

sum of a smooth convex function and a nonsmooth convex function.

To implement it for a sparsity-aware adaptive filter, one can choose

a quadratic error function and the ℓ1-norm as a smooth term and a

nonsmooth term, respectively, so that APFBS considers an ℓ1-norm

regularized least squares problem at each iteration. In this case, the

APFBS algorithm consists of two steps: (i) the gradient descent step,

which is equivalent to NLMS, and (ii) the shrinkage step based on

the proximity operator of the ℓ1-norm.

The second step of the APFBS algorithm involves a shrinkage

parameter, which controls the magnitude of the update and the per-

formance of the APFBS algorithm. If one choose an optimal value

of the shrinkage parameter, the algorithm works much better than

the NLMS algorithm. However, the optimal value of the shrinkage

parameter does not appear extensively. It has been only known to

be determined by many factors including statistical properties of the

input and noise, which are often unknown in most situations. With a

roughly chosen shrinkage parameter, the APFBS algorithm can yield

a poor estimation of the target system.

This work was supported by JSPS Grants-in-Aid (15K06081,
15K13986, 15H02757).

To avoid an inappropriate setting of the shrinkage parameter and

improve the performance of the algorithm, some automatic shrink-

age tuning methods have been studied. Yamagishi et al. have pro-

posed approaches to automatic shrinkage tuning based on an instan-

taneous approximation of a mean squared error [17], and a system

mismatch [18]. To get a fine approximation, they have assumed that

the noise is under an i.i.d. zero-mean normal distribution with known

variance, which is utilized in their shrinkage tuning methods.

In this paper, we present a novel automatic shrinkage tuning

technique under zero-mean additive noise with unknown variance.

We use time-averaged second-order statistics to achieve minimal

system mismatch as possible. Then, a piecewise quadratic cost func-

tion on the shrinkage parameter is obtained and we minimize it by

comparing the piecewise optima. The proposed shrinkage tuning

takes advantage especially under a colored input signal, as shown by

numerical examples.

2. PRELIMINARIES

We consider the following linear adaptive filtering model:

dn = u
T

nh
∗ + ǫn, n ∈ N, (1)

where un ∈ R
m is the input, dn ∈ R is the output, h∗ ∈ R

m is

the target system to be estimated, and ǫn ∈ R is zero-mean additive

noise. Note that the zero-mean assumption is the only assumption

that is made on the noise in this paper. The input un and output dn
are observable. It is widely accepted in signal processing community

to assume that (i) the input un and the noise ǫn are independent

to each other, and (ii) the norm of the input un does not change

drastically at each iteration [19, 20]. Under these assumptions, we

have

E[ǫnun] = E[ǫn]E[un] = 0, (2)

and

E

[

ǫnun

‖un‖22

]

≈
E[ǫnun]

E[‖un‖22]
= 0, (3)

where ‖u‖2 :=
√
∑m

i=1 u
2
i is the ℓ2-norm of a vector u :=

[u1, u2, · · · , um]T ∈ R
m.

It has been known that the APFBS algorithm (See Algo-

rithm 1) is known to estimate h∗ with higher accuracy than the

NLMS algorithm when the target system h∗ is sparse [6]. Note

here that sgn(·) denotes the signum function, and each vector

ei (i ∈ {1, 2, · · · ,m}) stands for the unit vector whose i-
th entry is one and the others are zero. The vector wn :=
[wn,1, wn,2, · · · , wn,m]T ∈ R

m is the weighting vector whose

entries are given as follows:

wn,i :=
1

|gn,i|+ ν
, (4)
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Algorithm 1. APFBS [6]

0. h1 = 0, µ ∈ (0, 2) : step size, λ ≥ 0 : shrinkage parameter

1. gn = hn − µ
uT

nhn − dn
‖un‖22

un

2. hn+1 =

m
∑

i=1

sgn(gn,i)max{|gn,i| − µλwn,i, 0}ei

where ν > 0 is a sufficiently small constant which prevents the de-

nominator from being exactly zero.

The first step of Algorithm 1

gn := [gn,1, gn,2, · · · , gn,m]T = hn − µ
uT

nhn − dn
‖un‖22

un (5)

is the same with the update equation of the NLMS algorithm. On the

other hand, the second step

hn+1 =

m
∑

i=1

sgn(gn,i)max{|gn,i| − µλwn,i, 0}ei (6)

can be seen as the proximity operator of a weighted ℓ1-norm

‖h‖1,wn :=
∑

i

wn,i|hi|. (7)

Hence, Algorithm 1 can be regarded as a time-varying extension of

the proximal forward-backward splitting method [21]. The nth it-

eration of Algorithm 1 is based on the following regularized least

squares problem:

min
h∈Rm

1

2

(uT

nh− dn)
2

‖un‖22
+ λ‖h‖1,wn . (8)

Remark 1. The second step of Algorithm 1 is based on the proximity

operator [21]:

hn+1 =argmin
h

[

1

2
‖gn − h‖22 + µλ‖h‖1,wn

]

=proxµλ‖·‖1,wn
(gn)

=proxµλ‖·‖1,wn

(

hn − µ∇ϕn(hn)
)

, (9)

where ϕn(·) := (uT

n(·) − dn)
2/‖un‖

2
2. Denoting by I the iden-

tity operator, the composite operator Tn := proxµλ‖·‖1,wn
◦ (I −

µ∇ϕn) satisfies

‖Tn(a)− Tn(b)‖
2
2 ≤ ‖a− b‖22,∀a, b ∈ R

m. (10)

In addition, any vector

z ∈ Ωn := argmin
h∈Rm

[

1

2

(uT

nh− dn)
2

‖un‖22
+ λ‖h‖1,wn

]

(11)

satisfies Tn(z) = z, and thus the inequality in (10) verifies that

‖hn+1 − z‖2 ≤ ‖Tn(hn)− Tn(z)‖2 ≤ ‖hn − z‖2. (12)

The shrinkage parameter λ ≥ 0 governs the performance of

Algorithm 1. There exists an optimal value of λ in the sense of min-

imizing the system mismatch ‖h−h∗‖22. The optimal λ depends on

statistical properties of the input and noise, which are often unknown

in practice.

3. A TIME-AVERAGING APPROACH

3.1. Approximating the System Mismatch

The main purpose of the proposed automatic shrinkage tuning

method is to minimize the system mismatch

‖hn+1 − h
∗‖22 =‖hn+1 − gn‖

2
2 + ‖gn − h

∗‖22

+ 2(hn+1 − gn)
T(gn − h

∗). (13)

According to the second step of Algorithm 1, the vector hn+1 can

be rewritten as follows:

hn+1 = An(λ)(gn − µλvn), (14)

where An(λ) is a diagonal matrix with

[An(λ)]ii =

{

1, |gn,i| > µλvn,i,

0, otherwise,
(15)

and vn =
∑m

i=1 sgn(gn,i)wn,iei. Then, the first term of the right-

hand side (RHS) in (13) can be expanded as

‖hn+1 − gn‖
2
2 = ‖(I −An(λ))gn + µλAn(λ)vn‖

2
2

= ‖gn‖
2
2 − g

T

nAn(λ)gn + (µλ)2vT

nAn(λ)vn. (16)

Note here that ‖gn‖
2
2, as well as the second term of RHS in (13), is

a constant in λ. The third term of RHS in (13) can be rewritten as

(hn+1 − gn)
T(gn − h

∗) = (hn+1 − gn)
T(cnR̂n)(gn − h

∗)

+(hn+1 − gn)
T(I − cnR̂n)(gn − h

∗), (17)

where R̂n = 1
n

∑n
k=1

uku
T

k

‖uk‖
2
2

, and cn > 0 (a design example of cn

is given later) is a constant which makes the first term of the RHS in

(17) close to the left-hand side in (17), which is unavailable because

of the unknown vector h∗. The first term of the RHS in (17) can be

expanded and approximated as follows:

(hn+1 − gn)
T(cnR̂n)(gn − h

∗)

= cn(hn+1 − gn)
T

(

R̂ngn −
1

n

n
∑

k=1

uT

kh
∗

‖uk‖22
uk

)

= cn(hn+1 − gn)
T

(

R̂ngn −
1

n

n
∑

k=1

dk − ǫk
‖uk‖22

uk

)

= cn(hn+1 − gn)
T

(

R̂ngn − p̂n +
1

n

n
∑

k=1

ǫkuk

‖uk‖22

)

≈ cn(hn+1 − gn)
T(R̂ngn − p̂n), (18)

where p̂n = 1
n

∑n
k=1

dk
‖uk‖

2
2

uk. The approximation in (18) is

followed by the assumption that E
[

ǫkuk

‖uk‖
2
2

]

≈ 0, which leads to

1
n

∑n
k=1

ǫkuk

‖uk‖2
2

≈ 0. The last term in (17) is unavailable in prac-

tice, and therefore we neglect it. Then, substituting (16) and (18)

into (13) and excluding the constant terms, we finally reach the

following cost function:

Jn(λ) :=(µλ)2vT

nAn(λ)vn − g
T

nAn(λ)gn

+ 2cn(gn − µλvn)
T
An(λ)(R̂ngn − p̂n). (19)
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The coefficient cn should be determined to make (18) an appro-

priate approximation. Consider an extreme case that R̂n = 1
m
I.

Note here that tr(R̂n) = 1 by the definition of R̂n. In this case,

choosing cn = m leads to the following equality:

(hn+1−gn)
T(gn−h

∗) = (hn+1−gn)
T(cnR̂n)(gn−h

∗). (20)

On the other hand, if R̂n has nonzero off-diagonal entries, the equal-

ity in (20) can be violated with cn = m, since the largest eigenvalue

of R̂n is larger than 1/m. The largest eigenvalue of R̂n tends to be

larger as the off-diagonal entries increase in magnitude. e.g., when

all the entries of R̂n are 1/m, the largest eigenvalue of R̂n is 1. To

negate such an effect, cn must be set small when the off-diagonals

have large magnitudes. Based on these observations, cn must satisfy

the following properties:

property 1) If R̂n = 1
m
I, then cn = m,

property 2) when the off-diagonal entries of R̂n are large,

cn must be smaller than m.

As a design example of cn that satisfies properties 1) and 2), we use

the following design in the current work.

Example 1. At each iteration n, one can set cn as follows:

cn =
m

m
∑

i=1

m
∑

j=1

|r̂n,ij |

, (21)

where r̃n,ij is the (i, j) entry of R̂n. With the above setting,

1. cn = m
m/m

= m when R̂n = 1
m
I; and

2. large off-diagonal entries make cn small, since cn is inversely

proportional to
∑m

i=1

∑m
j=1 |r̂n,ij | = 1+

∑m
i=1

∑

j 6=i |r̂n,ij |.

3.2. Derivation of Proposed Shrinkage Tuning

Since the matrix An(λ) takes a discrete (binary) value by its defini-

tion (22), the cost function Jn(λ) is piecewise quadratic. If we focus

on the interval ρj ≤ λ ≤ ρj+1 (j ∈ {0, 1, · · · ,m}), where we ob-

tain {ρ0, ρ1, · · · , ρm} by sorting
{

0,
|gn,1|

µwn,1
,

|gn,2|

µwn,2
, · · · ,

|gn,m|

µwn,m

}

in nondecreasing order, then An(λ) is constant at each time n, and

we thus let An,j = An(λ). With the fixed An,j , we define

Jfix,n(λ) :=(µλ)2vT

nAn,jvn − g
T

nAn,jgn

+ 2cn(gn − µλvn)
T
An,j(R̂ngn − p̂n). (22)

Differentiating (22) in terms of λ ∈ R and equating the derivative to

zero, we have the unique stationary point:

λn,j =
cnv

T

nAn,j(R̂ngn − p̂n)

µvT
nAn,jvn

. (23)

Since Jfix,n(λ) is a quadratic function defined on the interval ρj ≤
λ ≤ ρj+1 (j ∈ {1, 2, · · · ,m − 1}), we calculate λ∗

n,j minimizing

Jfix,n(λ) as follows:

λ∗
n,j = P[ρj,ρj+1](λn,j) =











ρj , (λn,j < ρj),

λn,j , (ρi ≤ λn,j ≤ ρj+1),

ρj+1, (λn,j > ρj+1).

(24)

We show the APFBS algorithm with the proposed shrinkage tuning

in Algorithm 2.

Algorithm 2. APFBS with the proposed shrinkage tuning

0. h1 = 0, µ ∈ (0, 2)

1. gn = hn − µ
uT

nhn − dn
‖un‖22

un

2. wn,i =
1

|gn,i|+ ν

3. vn =

m
∑

i=1

sgn(gn,i)wn,iei

4. R̂n =
1

n

n
∑

k=1

uku
T

k

‖uk‖22
, p̂n =

1

n

n
∑

k=1

dk
‖uk‖22

uk.

5. Calculate cn by (21)

6. Sort

{

0,
|gn,1|

µwn,1
,
|gn,2|

µwn,2
, · · · ,

|gn,m|

µwn,m

}

into {ρ0, ρ1, · · · , ρm} in nondecreasing order.

7. λ∗
n,j = P[ρj ,ρj+1]

(

cnv
T

nAn(ρj)(R̂ngn − p̂n)

µvT
nAn(ρj)vn

)

for j ∈ {0, 1, · · · ,m− 1}, and λ̂m = ρm.

8. Choose λ∗
n = argmin

λ∈{λ∗

n,j
}m
j=0

Jn(λ), according to (19)

9. hn+1 =
m
∑

i=1

sgn(gn,i)max{|gn,i| − µλ∗
nwn,i, 0}ei

The proposed shrinkage tuning technique involves matrix cal-

culations for R̂n, which causes more expensive computational cost

than the shrinkage tuning in [18]. However, one can also see that the

proposed tuning is more robust to a colored input, as shown in the

following section.

4. NUMERICAL EXAMPLES

We compare the APFBS algorithm with the proposed tuning

(APFBS-Proposed), with (i) the NLMS algorithm; (ii) the APFBS

algorithm with a carefully tuned shrinkage parameter (APFBS-

Fixed); and (iii) the APFBS algorithm with the shrinkage tuning

in [18] (APFBS-ST). The weighting technique proposed in [22] is

employed for the later two algorithms.

4.1. Initial Setting

We use the echo path model #4 for testing of speech echo cancel-

ers defined in the ITU-T Recommendation G.168 [23] as the target

system. We put zeros as inactive regions before and after echo path

model, so that the entire length of the system is m = 512 (See Fig-

ure 1). As input signals, we have (i) a white Gaussian signal and

(ii) a colored signal generated by an autoregressive (AR) process as

follows:

u1 = 0, un = 0.9un−1 + 0.1ζn (n ≥ 2), (25)

where ζn ∈ R is a white Gaussian noise. We employ an additive

white Gaussian noise, and utilize its variance in the shrinkage tuning

of [18]. The step size is set as µ = 0.5 for all the algorithms.
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Fig. 1. The target system based on the echo path model #4 [23]
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Fig. 2. The learning curves under the white input (left) and the col-

ored input (right) (SNR = 20[dB]).

4.2. Numerical Results

We first show learning curves of the algorithms for SNR = 20[dB]

by Figure 2. One can readily see that the proposed shrinkage tun-

ing does not slow the initial convergence rate of the APFBS algo-

rithm. In addition, the proposed shrinkage tuning works better than

the NLMS algorithm under both white and colored inputs.

Figures 3, 4 show the system mismatches in the steady state, un-

der various SNR conditions. Figure 3 is the case of the white Gaus-

sian input, and Figure 4 is the case of the colored (AR) input. Un-

der the white Gaussian input signal, the proposed shrinkage tuning

is better than the one proposed in [18]. The performance of the pro-

posed shrinkage tuning method is closer to that of the manual tuning.

When the input is colored, the shrinkage tuning based on instanta-

neous approximation fails and leads to the larger system mismatch

than that of the NLMS algorithm. On the other hand, although not

so fine as the manual tuning, the proposed shrinkage tuning shows a

more robust performance.

4.3. Discussion

The main differences of the proposed shrinkage tuning from the

shrinkage tuning method of [18] can be presented as follows:

• The proposed shrinkage tuning utilizes time-averaged terms;

• it does not need the constraint of white Gaussian noise.

In the approximation of the system mismatch, the proposed

method utilizes the time-averaged second-order statistics, while

the shrinkage tuning in [18] uses instantaneous observations at

each iteration. The time-averaging operation involves a term on

unu
T

n ∈ R
m×m, and thus the proposed shrinkage tuning is more

expensive than the one proposed in [18]. Despite such computational

cost, the proposed shrinkage tuning takes advantage in a sense of

minimizing the system mismatch. Especially, the proposed shrink-

age tuning is robust to the colored input signal, while the shrinkage

tuning based on an instantaneous approximation can lead to a poorer

performance of the APFBS algorithm even than that of the NLMS

algorithm, which has no shrinkage parameter (See Figure 4).
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Fig. 3. System mismatch vs. SNR (white input).
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Fig. 4. System mismatch vs. SNR (colored input).

The shrinkage tuning in [18] has been developed under that as-

sumption that the additive noise is Gaussian with known variance.

The assumption is needed in order to utilize Stein’s lemma [24] and

achieve an approximation of the system mismatch well enough. On

the other hand, the proposed shrinkage tuning is developed without

such an assumption. Nevertheless, it results a better performance

even under the white Gaussian noise (See Figure 3).

5. CONCLUDING REMARKS

We have proposed an automatic shrinkage tuning for the APFBS al-

gorithm. The APFBS algorithm considers an ℓ1-norm regularized

least square problem at each iteration, and involves a shrinkage pa-

rameter to exploit the sparsity. Choosing the shrinkage parameter

carefully, one can achieve an excellent performance of the APFBS

algorithm.

The proposed shrinkage tuning has been derived by approxi-

mating the system mismatch using time-averaged terms. The cost

function has been piecewise quadratic, and it is thus minimized by

comparing the piecewise optima. In the numerical examples, we

have shown that the proposed shrinkage tuning method suppresses

the system mismatch better than the shrinkage tuning with an in-

stantaneous approximation, under both of white and colored input

signals.
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