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ABSTRACT

In this paper, marginal versions of the Bayesian Bhattacharyya

lower bound (BBLB), which is a tighter alternative to the clas-

sical Bayesian Cramér-Rao bound, for discrete-time filtering

are proposed. Expressions for the second and third-order

marginal BBLBs are obtained and it is shown how these can

be approximately calculated using particle filtering. A sim-

ulation example shows that the proposed bounds predict the

achievable performance of the filtering algorithms better.

Index Terms— Performance bounds, Bayesian estima-

tion, Bhattacharyya bounds, nonlinear filtering, particle filter

1. INTRODUCTION

In discrete-time filtering, one is interested in estimating the

state of a dynamic system at the current time instant, given

all available measurements up to that time instance. If the

dynamic system has a linear, additive Gaussian structure, then

the celebrated Kalman filter [1] is the optimal filter (in mean-

square error (MSE) sense). The case of a nonlinear dynamic

system is much more challenging and a plethora of nonlinear

filters have been proposed, see e.g. [2–4].

Assessing the best achievable performance of nonlinear

filters is a challenging problem. In the last few years, a va-

riety of Bayesian bounds, see e.g. [5–9], on the MSE perfor-

mance for discrete-time filtering have been proposed [10–16].

The approach proposed by Tichavský et al. to compute the

Bayesian Cramér-Rao lower bound (BCRLB) is perhaps the

most widely used today. It is based on recursively comput-

ing the information matrix of the joint density of the state

and measurement sequence, which is called joint BCRLB (J-

BCRLB). In [15] a BCRLB that operates on the marginal

density of the current state and the measurement sequence

(M-BCRLB) was proposed that is tighter or equal to the J-

BCRLB.

In this paper, we propose marginal Bayesian Bhat-

tacharyya bounds (M-BBLBs) which, compared to the M-

BCRLB, additionally account for the information contained

This work was partly supported by ELLIIT.

in higher-order derivatives of the marginal density, see

also [17, 18] for application of the BLB to other problems. A

particle filter (PF) approach is proposed to approximate these

bounds numerically. The paper investigates only scalar, pos-

sibly nonlinear dynamic systems, since higher-dimensional

systems require the computation of higher-order (mixed)

derivatives of the current state vector elements making the

computation of the bound eventually too complex to be used

in practice. Further, the PF approach requires a huge amount

of particles to approximate the marginal bounds in high-

dimensional systems. A convincing example of a scalar dy-

namic system with a moderate number of particles shows that

the proposed bounds achieve a better prediction performance

for the filtering algorithms.

2. WEISS-WEINSTEIN FAMILY OF BOUNDS

We aim at providing a lower bound for the MSE of an ar-

bitrary estimator x̂(z) of the random variable x ∈ ❘ based

on the measurements z ∈ ❘. The lower bounds in Weiss-

Weinstein family [19] solves this problem as follows.

❊x,z{[x− x̂(z)]2} ≥ V G−1V T , (1)

where ❊x[·] denotes the expectation operator with respect to

the variable x and the elements of the vector V ∈ ❘
1×r and

the matrix G ∈ ❘
r×r are defined as

Vj , ❊x,z[xψj(x, z)], Gij , ❊x,z[ψi(x, z)ψj(x, z)].

Here,Aij and xi denote the i, jth element of the matrixA and

the ith element of the vector x, respectively. The score func-

tions {ψi(x, z)}ri=1 used in the definitions above must satisfy

the property ❊x[ψi(x, z)] = 0 for i = 1, . . . , r and for all z. In

this study, we consider BBLBs which are in Weiss-Weinstein

family of lower bounds.

3. GENERAL BHATTACHARYYA BOUNDS

The r-th order (r ≥ 1) BBLB is obtained using the following

specific selection of the score functions

ψi(x, z) =
1

p(x, z)

∂ip(x, z)

∂xi
=

1

p(x|z)
∂ip(x|z)
∂xi

(2)
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for i = 1, . . . , r. A lower bound for the MSE can be written

as

❊x,z{[x− x̂(z)]2} ≥ VrG
−1V T

r , Br, (3)

where Vr , −[1,

r − 1 times︷ ︸︸ ︷
0, . . . , 0 ] and the elements of the matrix

G ∈ ❘
r×r are defined as follows

Gij , ❊x,z

{
1

p2(x, z)

∂ip(x, z)

∂xi
∂jp(x, z)

∂xj

}
. (4)

The bound expression presented in (3) holds, given that suit-

able regularity are satisfied, see [19] for details.

Let us define the sub-matrix Gi1:i2,j1:j2 of the matrix G

as Gi1:i2,j1:j2 , [Gij ]i=i1,...,i2,j=j1,...,j2 . We can see that

Br , VrG
−1V T

r = VrG
−1
1:r,1:rV

T
r (5)

= Vr−1

(
G1:r−1,1:r−1 −G1:r−1,rG

−1
rr Gr,1:r−1

)−1
V T
r−1

= Vr−1G
−1
1:r−1,1:r−1V

T
r−1︸ ︷︷ ︸

,Br−1

+Vr−1G
−1
1:r−1,1:r−1G1:r−1,rS

−1
rr Gr,1:r−1G

−1
1:r−1,1:r−1V

T
r−1

for r > 1 where Srr , Grr −Gr,1:r−1G
−1
1:r−1,1:r−1G1:r−1,r

is the Schur complement of Grr. Since Srr is positive semi-

definite (since G is positive semi-definite), the second term

on the right hand side above is always non-negative. Hence

we have Br ≥ Br−1 for r > 1, i.e., BBLBs are monoton-

ically non-decreasing as the order r increases. Since B1 is

also BCRLB, the second and higher order BBLBs are at least

as tight as BCRLB. In this paper, we only consider BBLBs of

orders r = 2 and r = 3.

4. MARGINAL BHATTACHARYYA BOUND

In contrast to the J-BCRLB and the joint BBLB (J-BBLB),

which are based on the information in the joint density

p(Xk, Zk) of the state sequence Xk , [x0, . . . , xk] and

measurement sequence Zk , [z1, . . . , zk], see [10, 12] for

a detailed derivation, the marginal versions of these bounds

extract information from the marginal density p(xk, Zk) [or

alternatively the posterior p(xk|Zk)]. Computation of the M-

BBLB for the case of general linear and nonlinear dynamic

systems is investigated in the following.

4.1. Linear Systems

In this section, we consider a linear scalar dynamic system

with additive Gaussian noise, i.e.,

xk = Fk xk−1 + vk−1, (6a)

zk = Hk xk + wk, (6b)

where vk−1 ∼ N (0, Qk−1), wk ∼ N (0, Rk) and x0 ∼
N (x̂0|0, P0|0). For such systems, the posterior density is

available in closed-form p(xk|Zk) = N (xk; x̂k|k(Zk), Pk|k),
where x̂k|k(Zk) and Pk|k are computed from the well-known

Kalman filter recursions. In particular, for the error variance

we have

Pk|k =(1−KkHk)(F
2
kPk−1|k−1 +Qk−1), (7a)

Kk =
(F 2

kPk−1|k−1 +Qk−1)Hk

H2
k(F

2
kPk−1|k−1 +Qk−1) +Rk

, (7b)

and the recursion is initiated with P0|0. The M-BBLB for

this case can be computed analytically, where the following

theorem holds:

Theorem 1. For linear additive Gaussian systems, the M-

BBLB of order r = 2, 3 is equal to the (M-)BCRLB, and is

given by the error covariance Pk|k of the Kalman filter.

Proof. See appendix.

We can conclude that for linear Gaussian systems, addi-

tionally taking into account (non-zero) higher-order deriva-

tives cannot not improve the tightness of the bound compared

to the BCRLB, which is known to be the tightest bound in this

setting [10, 15].

4.2. Nonlinear Systems

If the dynamic system is nonlinear, i.e.,

xk = fk(xk−1, vk−1), (8a)

zk = hk(xk, wk), (8b)

a closed-form expression for the posterior p(xk|Zk) (and thus

the M-BBLB) is generally not available. Still, it is possi-

ble to evaluate the expectations appearing in Gij numerically

by making use of sequential Monte Carlo techniques, a.k.a.

particle filtering, and thus compute an approximate marginal

bound. For this purpose, we decompose the marginal density

p(xk, Zk) as

p(xk, Zk) = p(zk|xk)p(xk|Zk−1)p(Zk−1) (9)

and introduce the following abbreviations: pk , p(xk|Zk−1),
gk , p(zk|xk). Then, the score functions can be written as

ψ1 =
1

gk

∂gk

∂xk
+

1

pk

∂pk

∂xk
, (10a)

ψ2 =
1

gk

∂2gk

∂x2k
+

2

gkpk

∂gk

∂xk

∂pk

∂xk
+

1

pk

∂2pk

∂x2k
, (10b)

ψ3 =
1

gk

∂3gk

∂x3k
+

3

gkpk

∂2gk

∂x2k

∂pk

∂xk
+

3

gkpk

∂gk

∂xk

∂2pk

∂x2k

+
1

pk

∂3pk

∂x3k
. (10c)

4290



Inserting (10) into (4) and performing straightforward manip-

ulations, the elements of the matrix G can be expressed as

G11 = ❊

{
1

g2k

(
∂gk

∂xk

)2 }
+ ❊

{
1

p2k

(
∂pk

∂xk

)2 }
, (11a)

G12 = ❊

{
1

g2k

∂gk

∂xk

∂2gk

∂x2k

}
+ 2❊

{
1

g2kpk

(
∂gk

∂xk

)2
∂pk

∂xk

}

+ ❊

{
1

p2k

∂pk

∂xk

∂2pk

∂x2k

}
, (11b)

G22 = ❊

{
1

g2k

(
∂2gk

∂x2k

)2 }
+ 4❊

{
1

g2kpk

∂gk

∂xk

∂2gk

∂x2k

∂pk

∂xk

}

+ 4❊

{
1

g2kp
2
k

(
∂gk

∂xk

∂pk

∂xk

)2 }
+ ❊

{
1

p2k

(
∂2pk

∂x2k

)2 }
, (11c)

G13 = ❊

{
1

g2k

∂gk

∂xk

∂3gk

∂x3k

}
+ 3❊

{
1

g2kpk

∂gk

∂xk

∂2gk

∂x2k

∂pk

∂xk

}

+ 3❊

{
1

g2kpk

(
∂gk

∂xk

)2
∂2pk

∂x2k

}
+ ❊

{
1

p2k

∂pk

∂xk

∂3pk

∂x3k

}
, (11d)

G23 = ❊

{
1

g2k

∂2gk

∂x2k

∂3gk

∂x3k

}
+ 3❊

{
1

g2kpk

(
∂2gk

∂x2k

)2
∂pk

∂xk

}

+ 3❊

{
1

g2kpk

∂gk

∂xk

∂2gk

∂x2k

∂2pk

∂x2k

}
+ 2❊

{
1

g2kpk

∂gk

∂xk

∂3gk

∂x3k

∂pk

∂xk

}

+ 6❊

{
1

g2kp
2
k

∂gk

∂xk

∂2gk

∂x2k

(
∂pk

∂xk

)2 }
+ ❊

{
1

p2k

∂2pk

∂x2k

∂3pk

∂x3k

}

+ 6❊

{
1

g2kp
2
k

(
∂gk

∂xk

)2
∂pk

∂xk

∂2pk

∂x2k

}
, (11e)

G33 = ❊

{
1

g2k

(
∂3gk

∂x3k

)2 }
+ 6❊

{
1

g2kpk

∂2gk

∂x2k

∂3gk

∂x3k

∂pk

∂xk

}

+ 9❊

{
1

g2kp
2
k

(
∂2gk

∂x2k

∂pk

∂xk

)2 }
+ ❊

{
1

p2k

(
∂3pk

∂x3k

)2 }

+ 6❊

{
1

g2kpk

∂gk

∂xk

∂3gk

∂x3k

∂2pk

∂x2k

}
+ 9❊

{
1

g2kp
2
k

(
∂gk

∂xk

∂2pk

∂x2k

)2}

+ 18❊

{
1

g2kp
2
k

∂gk

∂xk

∂2gk

∂x2k

∂pk

∂xk

∂2pk

∂x2k

}
. (11f)

The expectations involving only higher-order derivatives

of gk are available in closed-form for many models (see the

example in this paper). Alternatively, these can be approxi-

mated by a simple (non-sequential) Monte Carlo integration

approach. On the other hand, the evaluation of higher-order

derivatives of the prediction density pk is more involved.

Here, we approximate these quantities using particle filtering,

see e.g. [2, 4, 20].

The PF approximates the joint smoothing distribution

p(Xk|Zk) with a set of weighted particles {X(p)
k , w

(p)
k }Np

p=1,

yielding a point-mass approximation given as

p̂Np(Xk|Zk) ,

Np∑

p=1

w
(p)
k δ

X
(p)
k

(Xk), (12)

where δx(·) denotes the Dirac distribution at point x andX
(p)
k

is a particle state trajectory with corresponding weight w
(p)
k .

The PF is based on sequential importance sampling method,

where particles are generated from a proposal distribution

q(xk|xk−1, zk) followed by an update step of the particle

weights according to

w
(p)
k ∝ w

(p)
k−1

p(zk|x(p)k )p(x
(p)
k |x(p)k−1)

q(x
(p)
k |x(p)k−1, zk)

. (13)

In order to make PF work in practice, a resampling step is

performed to reduce the variance in the weights.

By using the approximate density in (12), one can approx-

imate the prediction density p(xk|Zk−1) and the correspond-

ing higher-order derivatives as follows

p(xk|Zk−1) =

∫
p(xk|xk−1)p(Xk−1|Zk−1)dXk−1

≈
Np∑

p=1

w
(p)
k−1p(xk|x

(p)
k−1), (14a)

∂ip(xk|Zk−1)

∂xik
≈

Np∑

p=1

w
(p)
k−1

∂ip(xk|x(p)k−1)

∂xik
. (14b)

Using this approximation, any expectation Eij in the form

Eij , ❊xk,Zk−1

{
1
p2
k

∂ipk

∂xi
k

∂jpk

∂x
j

k

}
can be approximated as

Êij =
1

Nmc

Nmc∑

ℓ=1

1

p2k

∂ipk

∂xik

∂jpk

∂x
j
k

∣∣∣∣∣
xk=x

(ℓ)
k

,Zk−1=Z
(ℓ)
k−1

, (15)

where x
(ℓ)
k , Z

(ℓ)
k−1 with ℓ = 1, . . . , Nmc are independent and

identically distributed (i.i.d.) random variables such that

(x
(ℓ)
k , Z

(ℓ)
k−1) ∼ p(xk, Zk−1) holds.

5. SIMULATIONS

We investigate the dynamical system proposed in [12], where

the process model is linear Gaussian with transition pdf

p(xk|xk−1) =
1√
2πQ

exp

{
− (xk − xk−1)

2

2Q

}
(16)

and the measurement model is described by the skewed Gaus-

sian likelihood given as

p(zk|xk) =





√
2√

π(σ1+σ2)
exp

{
− (zk−xk)

2

2(σ1)2

}
, zk < xk,

√
2√

π(σ1+σ2)
exp

{
− (zk−xk)

2

2(σ2)2

}
, otherwise.

In the simulations below, the following parameters are used:

σ1 = 1, σ2 = 3, Q = 10, x0 ∼ N (0, 1). The expressions for
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Gij to compute the M-BBLB can be found as follows.

G11 =
1

σ1σ2
+ E11, (17a)

G12 =

√
2

π
· σ1 − σ2

(σ1σ2)2
+ E12, (17b)

G22 = 2

(
σ2
1 + σ2

2 − σ1σ2

(σ1σ2)3

)
+

4E11

σ1σ2
+ E22, (17c)

G13 =E13, (17d)

G23 = 3

√
2

π

(
σ3
1 − σ3

2 − σ2
1σ2 + σ2

2σ1

(σ1σ2)4

)

+ 6

√
2

π
· σ1 − σ2

(σ1σ2)2
· E11 +

6

σ1σ2
· E12 + E23, (17e)

G33 = 6

(
σ4
1 + σ4

2 − σ3
1σ2 − σ1σ

3
2 + (σ1σ2)

2

(σ1σ2)5

)

+ 18

(
σ2
1 + σ2

2 − σ1σ2

(σ1σ2)3

)
· E11 + 18

√
2

π
· σ1 − σ2

(σ1σ2)2
· E12

+ 9
E22

σ1σ2
+ E33. (17f)

Notice that some expectations appearing in Gij were calcu-

lated analytically thanks to the structure of the likelihood.

The challenge then remains to approximate numerically the

expectations Eij . For this purpose, we used particle filters

withNp = 1000 particles and p(xk|xk−1) as importance den-

sity whose results were averaged over Nmc = 100 000 Monte

Carlo runs.

We compare the proposed bounds to 1) best linear un-

biased estimator (BLUE), i.e., the Kalman filter, 2) Particle

filter (PF), 3) joint Bayesian Bhattacharyya lower bound

(J-BBLB) of order 2, see [12] and [21] for corrections, 4)

marginal Bayesian Cramér-Rao lower bound (M-BCRLB)

and 5) joint BCRLB (J-BCRLB). The MSE performances of

the estimators are shown along with the bounds in Figure 1.

As expected we observe that M-BBLB of order 3 is tighter

than M-BBLB of order 2; and M-BBLB of order 2 is tighter

than J-BBLB of order 2. It is seen that the gain obtained by

marginalization in BBLBs of order 2 is slightly more than that

is observed with BCRLBs (i.e., BBLBs with order 1). The

increase of the BBLB order (from 2 to 3) seems to provide a

significant improvement in tightness. Overall, the proposed

bounds predict the estimators’ performance much better than

BCRLBs.

6. CONCLUSION AND FUTURE WORK

Marginal BBLBs have been proposed as tighter alternatives

to BCRLB in bounding discrete-time filtering performance.

Expressions for marginal BBLBs of order 2 and 3 have been

obtained and a suitable numerical calculation methodology

has been outlined.

0 2 4 6 8 10

Time

1

1.5

2

2.5

3

3.5

M
S

E

BLUE

PF

M-BBLB - Order 3

M-BBLB - Order 2

J-BBLB - Order 2

M-BCRLB

J-BCRLB

Fig. 1. MSE performance of different filters and bounds.

The simulation results on a scalar nonlinear dynamic sys-

tem show that the order increase from 2 to 3 yields a signifi-

cant improvement in tightness. An interesting question would

be the behavior of the BBLBs when the order is further in-

creased. As the bounds get closer to the filter performances

the improvements are expected to be smaller. A promising fu-

ture research idea can be to find out the order of BBLB above

which the improvements become minor.

7. APPENDIX

For the computation of the M-BBLB of order r = 2, 3 we

require the following higher-order derivatives

1

p̃k

∂p̃k

∂xk
= −

(
xk − x̂k|k
Pk|k

)
,

1

p̃k

∂2p̃k

∂x2k
=

(
xk − x̂k|k
Pk|k

)2

− 1

Pk|k
,

1

p̃k

∂3p̃k

∂x3k
= −

[(
xk − x̂k|k
Pk|k

)3

− 3

(
xk − x̂k|k
P 2
k|k

)]
.

where p̃k = p(xk|Zk). Straightforward calculations yield

V3G
−1 V T

3 =V3

[
diag

(
P−1
k|k , 2P

−2
k|k , 6P

−3
k|k

)]−1

V T
3

=Pk|k,

where we have a diagonal G matrix due to the fact that the

odd moments of a Gaussian random variable are zero and the

even moments to compute G13 cancel each other. Pk|k is the

error variance of the Kalman filter, which for linear Gaus-

sian systems is also equivalent to the BCRLB. Equivalence

of BCRLB and M-BCRLB for linear Gaussian systems was

proven in [15].
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