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ABSTRACT
This paper is concerned with dynamic system state estima-
tion based on a series of noisy measurement with the presence
of outliers. An incremental learning assisted particle filtering
(ILAPF) method is presented, which can learn the value range
of outliers incrementally during the process of particle filter-
ing. The learned range of outliers is then used to improve
subsequent filtering of the future state. Convergence of the
outlier range estimation procedure is indicated by extensive
empirical simulations using a set of differing outlier distribu-
tion models. The validity of the ILAPF algorithm is evaluated
by illustrative simulations, and the result shows that ILAPF is
more accurate and faster than a recently published state-of-
the-art robust particle filter. It also shows that the incremental
learning property of the ILAPF algorithm provides an effi-
cient way to implement transfer learning among related state
filtering tasks.

Index Terms— incremental learning, outlier, particle fil-
tering, robust state filtering, transfer learning

1. INTRODUCTION

State filtering plays a key role in the field of signal process-
ing. This paper is concerned with nonlinear state filtering,
for which the particle filter (PF) has been widely accepted as
a well-established methodology for use [1–6]. For conven-
tional PF methods, a major degradation in performance will
happen when a significant mismatch between the leveraged
model and the real mechanism that governs the system’s evo-
lution exists. A popular strategy to handle such issue of model
mismatch is to employ a set of candidate models, instead of
a single model, to take account of model uncertainty. To this
end, a number of multiple-model strategies (MMS) based PF
algorithms have been proposed in the literature [7–11].

In this paper, we consider the problem of nonlinear state
filtering in presence of outliers. Instead of resorting to com-
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monly used MMS that usually specify a set of candidate mod-
els beforehand to take account of model uncertainty, we select
to learn an approximation of the outlier distribution in a se-
quential way. Specifically, we approximate the outlier distri-
bution by a simple uniform distribution and then use an outlier
range estimation (ORE) procedure to estimate the lower and
upper bounds of that distribution. Convergence of the ORE
procedure is indicated by extensive simulations as shown in
Subsection 3.1. We incorporate the developed ORE opera-
tions into each iteration of PF, referring the resulting algo-
rithm as Incremental Learning Assisted PF (ILAPF). This al-
gorithm is shown to be robust against outliers, more accurate
and faster than a robust PF method published in ICASSP 2017
[7], and can provide an efficient way to implement transfer
learning among related state filtering tasks.

2. MODEL

In this Section, we present a succinct description of the model
we use, based on which the ILAPF algorithm is developed.
Following [7], we consider a state space model as follows

xk = f(xk−1) + uk (1)
yk = h(xk) + nk, (2)

where k denotes the time index, x ∈ Rdx denotes the state
of the dynamic system to be estimated, y ∈ Rdy the measure-
ment of xk, f the state transition function, h the measurement
function, u the independent identically distributed (i.i.d.) pro-
cess noise and n the i.i.d. measurement noise. In a classical
problem setting, the probability density functions (pdfs) of uk

and nk are assumed a priori known, which determine the state
transition prior density p(xk|xk−1) and the likelihood func-
tion p(yk|xk), respectively. Then using Bayesian theorem,
we can formulate the state filtering problem as the computa-
tion of the a posteriori pdf of xk given y1:k , {y1, . . . , yk},
denoted as p(xk|y1:k) (or in short pk|k). Recursive solutions
exist since pk|k can be computed from pk−1|k−1 recursively
as follows

pk|k =
p(yk|xk)

∫
p(xk|xk−1)pk−1|k−1dxk−1

p(yk|y1:k−1)
. (3)
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Here we bring a variable o ∈ {0, 1} to take account of
the uncertainty in the measurement model. Specifically, let
ok = 1(0) denote the event that yk is (is not) an outlier. If
ok = 0 we assume that the measurement noise nk is Gaussian
distributed by default, namely nk ∼ N (0, R), where R is a
priori known. If ok = 1 we assume that nk is generated from
an unknown uniform distribution U(lb, ub), where lb and ub
denote the lower and upper bounds of U , respectively. The
likelihood function can now be represented as follows

p(yk|xk) =

{
p(yk|xk, ok = 1), if ok = 1
p(yk|xk, ok = 0), if ok = 0

(4)

where

p(yk|xk, ok = 1) =

{
1/Vlb,ub, if ek ∈ [lb, ub]
0, otherwise (5)

p(yk|xk, ok = 0) = N (ek|0, R) , (6)

where ek = yk − h(xk) and Vlb,ub denotes the volume of the
space bounded by lb and ub. An ORE procedure is developed
to estimate lb and ub incrementally, see details in Subsection
3.1.

3. THE PROPOSED ILAPF ALGORITHM

Here we present the ILAPF algorithm used to address the
Bayesian state filtering problem defined by Eqns.(1)-(6). Sup-
pose that, at time step k − 1 (k > 1), we have a discrete ap-
proximation of p(x1:k−1|y1:k−1) given by a set of weighted
samples {xi

1:k−1, ω
i
k−1}Ni=1,

∑N
i=1 ω

i
k−1 = 1. At time k,

the ith sample is first extended by a particle x̂i
k = f(xi

k−1).
Then, according to importance sampling theory [1, 12, 13], it
is weighted by

ωi
m,k = ωi

k−1p(yk|x̂i
k, ok = m), (7)

under the hypothesis ok = m, m = 0, 1. Then the likelihood
of the event ok = m is given by

L(ok = m) =
N∑
i=1

ωi
m,k. (8)

Assume that the prior probability p(ok = 0) = p(ok = 1) =
0.5. From Bayesian theorem the posterior probability of ok =
m is given by

π(ok = m) =
L(ok = m)

L(ok = 0) + L(ok = 1)
,m = 0, 1. (9)

Then the importance weights of the particles can be calculated
as follows

ωi
k ∝

∑
m={0,1}

π(ok = m)ω̃i
m,k, i = 1, . . . , N, (10)

where ω̃i
m,k = ωi

m,k/
∑N

j=1 ω
j
m,k. To get around of particle

degeneracy, we use a resampling step to discard the particles
with low weights and duplicate those with high weights. For
details on resampling techniques used by PF methods, readers
are referred to [14–16].

The above operations constitute the major building block
of the ILAPF algorithm, while a crucial issue is neglected,
that is how to compute p(yk|x̂i

k, ok = 1) in Eqn. (7) with
an unknown outlier distribution. We present the ORE proce-
dure in Subsection 3.1 to address the above issue, and then
summarize the operations of ILAPF in Subsection 3.2.

3.1. The outlier range estimation (ORE) procedure

Assume that the whole population of the outliers has a def-
inite value range specified by a lower and upper bounds lb
and ub. We can estimate lb and ub accurately provided that
we have enough outlier data points at hand. But in practical
tasks, usually, only a sparse set of outliers can be collected
in a sequential way. The question under consideration here
is: how to estimate lb and ub accurately using a limited num-
ber of outliers that have been found? To fit the sequential
structure of the state filtering problem, we also expect that the
estimation procedure can be performed in a sequential way.

We develop an ORE method to address the above prob-
lem. This method only has one free parameter I , which can
be interpreted as a measure of uncertainty. In ORE method,
we consider outliers sequentially, making an incremental up-
date to the estimation of lb and ub, once a new outlier arrives.
Assume that the current estimations of lb and ub are l̂b and ûb,
respectively, and the number of outliers that have been found
is n. When the (n+1)th outlier, denoted as zn+1, arrives, the
ORE procedure updates l̂b and ûb as follows

l̂b = min{l̂b, zn+1} − I/(n+ 1), (11)

ûb = max{ûb, zn+1}+ I/(n+ 1). (12)

We tested the validity of the ORE method via simulations. We
used 4 differing outlier distributions to simulate the outliers,
including a Uniform U(40, 50), a Gaussian N (45, 1), a Stu-
dent’s t and a two-component Gaussian mixture distribution
0.5N (45, 1)+0.5N (47, 1). The Student’s t distribution has a
degree of freedom 3, mean 45 and standard error 1. The ORE
procedure is initialized with l̂b = 20 and ûb = 70, which
represent an initial guess of the bounds. We considered 4 val-
ues of I , namely 10, 40, 70 and 100. For each I value and
each outlier distribution, we ran the ORE method to process
the data items that arrive one by one. We recorded the esti-
mated bounds at each time step when an outlier arrives, and
the result is shown in Fig.1. We see that, for every distribu-
tion case, the estimated bounds converge to the desired ones
and the convergence rate depends on the value of I . Specifi-
cally, Fig.1 shows that an I value between 10 and 40 will be
best for choice. So for the simulated experiments presented
in Section 4, the value of I is set at 20. Note that we take
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Fig. 1: The simulation result of using the ORE procedure to
sequentially estimate the range of the outliers. 4 distributions
to generate the outliers are considered, including the Uniform,
Gaussian, Student’s t and a two-component Gaussian mixture
distribution, corresponding to the top left, top right, bottom
left and bottom right panel, respectively. The X-coordinate
represents the number of outliers that have been detected and
the Y-coordinate the value of the outliers. m and σ denote
the mean and the standard error of a related distribution, re-
spectively. In the bottom right panel, m1 and m2 represent
the smaller and bigger mean of the two Gaussian components
that have the same standard error σ.

mean±3×standard error as the desired bounds for the Gaus-
sian and Student’s t cases, and m1 − 3σ and m2 + 3σ for the
Gaussian mixture case, where m1 and m2 denote the smaller
and bigger mean value, σ standard error of those 2 mixing
Gaussian components.

3.2. A summarization of the operations in ILAPF

Starting from {xi
k−1, ω

i
k−1}Ni=1, l̂b and ûb and the number of

outliers that have been found n, we present operations in one
iteration of the ILAPF algorithm corresponding to time step
k as follows.

• Sampling step. Sample x̂i
k from the state transition

prior by setting x̂i
k = f(xi

k−1), i = 1, . . . , N ;

• Weighting step. Set ωi
m,k using Eqn.(7), i = 1, . . . , N .

Compute π(ok = 1) and π(ok = 0) using Eqn. (9).
Calculate importance weight ωi

k using Eqn. (10), i =
1, . . . , N . Then normalize these weights to guarantee
that

∑N
i=1 ω

i
k = 1;

• ORE step. If π(ok = 1) > 0.5, declare yk to be an
outlier, let n = n+ 1 and update l̂b and ûb using Eqns.
(11) and (12), respectively. Note that π(ok = 1) is an
output of the above weighting step.

• Resampling step. Sample xi
k ∼

∑N
j=1 ω

j
kδx̂j

k
, set ωi

k =

1/N , i = 1, . . . , N . δx denotes the Dirac-delta func-
tion located at x.

4. PERFORMANCE EVALUATION

We evaluated the validity of ILAPF via illustrative simula-
tions. A recently published heterogeneous mixture model
based robust PF (HMM-RPF) [7] was included for perfor-
mance comparison.

4.1. Simulation Setting

The simulation setting is similar as that in [7]. We design
a modified version of the time-series experiment as presented
in [17] by replacing some normal measurements with outliers.
The time-series is generated as follows

xk+1 = 1+sin(0.04π× (k+1))+0.5xk +uk, 1 ≤ k < 60,
(13)

with the value of x1 set at 1, and uk represented as a
Gamma(3,2) random variable modeling the process noise.
The measurement model is

yk =

{
0.2x2

k + nk, k ≤ 30
0.2xk − 2 + nk, k > 30

(14)

The measurement noise nk is Gaussian distributed by de-
fault with mean 0 and variance 0.01. The outliers arrive at
time steps k = 7, 8, 9, 20, 37, 38, 39, 50. Each outlier is sim-
ulated by replacing the default Gaussian distribution with a
uniform distribution U(20, 30) in generating the value of nk

in Eqn.(14). The state filtering algorithms to be tested are set
to be blind to both the arrival time and the generative distri-
bution of the outliers.

4.2. Results

Based on the above simulation setting, we first simulated a
time-series and then ran the ILAPF and HMM-RPF [7] to
process the data, respectively. The ILAPF is initialized with
l̂b = 0, ûb = 70 and I = 20. The value range [0, 70] rep-
resents a vague initial guess for the real value range [20, 30].
An I value 20 is selected based on the simulation results as
shown in Fig. 1. The HMM-RPF algorithm in use is the same
as that presented in [7] with the forgetting factor α set at 0.9.
For both ILAPF and HMM-RPF, a particle size N = 200 is
used. The state filtering and the posterior model/hypothesis
inference results are shown in Figs.2 and 3, respectively.
We then conducted a Monte Carlo test for the involved algo-
rithms. We did the above experiment 30 times and then cal-
culated the mean of execution time (in seconds), the means
and variances of the mean-square-error (MSE) of the state es-
timates over these experiments for each algorithm. The result
is summarized in Table 1.
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Fig. 2: Filtering result of ILAPF and HMM-RPF [7].

Table 1: Execution time (in seconds), Mean and variance of
the MSE calculated over 30 independent runs of each algo-
rithm.

Algorithm Time MSE
mean var

ILAPF 3.998 0.365 0.007
HMM-RPF [7] 5.509 0.582 0.109

Table 2: Mean and variance of the MSE calculated over 30
independent runs of ILAPF for 4 consecutive tasks.

Task 1 Task 2 Task 3 Task 4
Mean of MSE 0.365 0.360 0.333 0.272

Variance of MSE 0.007 0.005 0.004 0.003

Finally, we tested whether the incremental learning prop-
erty of the ILAPF can provide benefits to implement a trans-
fer learning among related state filtering tasks. We simulated
4 consecutive tasks of state filtering in presence of outliers.
For each task, the experimental setting is totally the same as
presented in Subsection 4.1. The ILAPF is run for each task
one by one, and the learned value bounds of the outliers from
one task are used to initialize ILAPF for the subsequent task.
The estimated bound over these 4 tasks is shown in Fig.4 and
a quantitative MSE result corresponding to 30 independent
runs of the ILAPF for 4 consecutive tasks is presented in Ta-
ble 2. We see that, with aid of ILAPF, the learned informa-
tion on outliers from one task can be transferred to subsequent
tasks, resulting in a continuous incremental performance gain,
in terms of MSE, over tasks.

5. CONCLUSIONS

MMS is a powerful solution to address nonlinear state filter-
ing problems in presence of model uncertainty. The common
practice to implement MMS is to specify a set of candidate
models beforehand. In this paper, we proposed a novel way
to implement MMS in the context of nonlinear state filtering
in presence of outliers. Instead of specifying a set of candi-
date models beforehand, we select to learn a model to approx-
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Fig. 3: The top panel shows the ILAPF yielded posterior
probabilities of the outlier hypothesis (corresponding to ok =
1) and the non-outlier hypothesis (corresponding to ok = 0).
The bottom panel shows the HMM-RPF [7] yielded posterior
probabilities of the candidate models it employs and v denotes
the degree of freedom of a Student’s t model. The real arrival
time steps of the outliers are 7, 8, 9, 20, 37, 38, 39, 50.
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Fig. 4: The estimated lower and upper bounds of the outliers’
value range over 4 consecutive state filtering tasks

imate the distribution of the outliers in a sequential way. The
resulting algorithm, ILAPF, is shown to be more accurate and
faster than its competitor algorithm HMM-RPF [7]. Through
simulations, we also show that the ILAPF algorithm makes
transfer learning among related state filtering tasks possible.

4287



6. REFERENCES

[1] M. S. Arulampalam, S. Maskell, N. Gordon, and
T. Clapp, “A tutorial on particle filters for on-
line nonlinear/non-Gaussian Bayesian tracking,” IEEE
Trans. on Signal Processing, vol. 50, no. 2, pp. 174–188,
2002.

[2] J. Carpenter, P. Clifford, and P. Fearnhead, “Improved
particle filter for nonlinear problems,” IEE Proceedings-
Radar, Sonar and Navigation, vol. 146, no. 1, pp. 2–7,
1999.

[3] N. Gordon, D. Salmond, and A. F. M. Smith, “Novel
approach to nonlinear/non-Gaussian Bayesian state es-
timation,” IEE Proceedings F (Radar and Signal Pro-
cessing), vol. 140, no. 2, pp. 107–113, 1993.

[4] B. Liu, C. Ji, Y. Zhang, C. Hao, and K. Wong, “Multi-
target tracking in clutter with sequential Monte Carlo
methods,” IET radar, sonar & navigation, vol. 4, no. 5,
pp. 662–672, 2010.

[5] B. Liu and C. Hao, “Sequential bearings-only-tracking
initiation with particle filtering method,” The Scientific
World Journal, vol. 2013, pp. 1–7, 2013.

[6] B. Liu, X. Ma, and C. Hou, “A particle filter using SVD
based sampling Kalman filter to obtain the proposal dis-
tribution,” in Proc. of IEEE Conf. on Cybernetics and
Intelligent Systems. IEEE, 2008, pp. 581–584.

[7] B. Liu, “Robust particle filter by dynamic averaging
of multiple noise models,” in Proc. of the 42nd IEEE
Int’l Conf. on Acoustics, Speech, and Signal Processing
(ICASSP). IEEE, 2017, pp. 4034–4038.

[8] Y. Dai and B. Liu, “Robust video object tracking
via Bayesian model averaging-based feature fusion,”
Optical Engineering, vol. 55, no. 8, pp. 083102(1)–
083102(11), 2016.

[9] B. Liu, “Instantaneous frequency tracking under model
uncertainty via dynamic model averaging and particle
filtering,” IEEE Trans. on Wireless Communications,
vol. 10, no. 6, pp. 1810–1819, 2011.

[10] C. C. Drovandi, J. Mcgree, and A. N. Pettitt, “A Sequen-
tial Monte Carlo algorithm to incorporate model uncer-
tainty in Bayesian sequential design,” Journal of Com-
putational and Graphical Statistics, vol. 23, no. 1, pp.
3–24, 2014.
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