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ABSTRACT

The Bayesian information criterion is generic in the sense that
it does not include information about the specific model selec-
tion problem at hand. Nevertheless, it has been widely used
to estimate the number of data clusters in cluster analysis. We
have recently derived a Bayesian cluster enumeration crite-
rion from first principles which maximizes the posterior prob-
ability of the candidate models given observations. But, in the
finite sample regime, the asymptotic assumptions made by the
criterion, to arrive at a computationally simple penalty term,
are violated. Hence, we propose a Bayesian cluster enumera-
tion criterion whose penalty term is derived by removing the
asymptotic assumptions. The proposed algorithm is a two-
step approach which uses a model-based clustering algorithm
such as the EM algorithm before applying the derived crite-
rion. Simulation results demonstrate the superiority of our
criterion over existing Bayesian cluster enumeration criteria.

Index Terms— Cluster Enumeration, Bayesian Informa-
tion Criterion, Cluster Analysis, Small Sample Sizes

1. INTRODUCTION

Model selection is concerned with selecting a parsimonious
statistical model, that adequately explains the observed data,
from a family of candidate models using a predefined crite-
rion. Over the years, many model selection criteria have been
proposed in the literature [1–10]. Most model selection crite-
ria contain data fidelity and penalty terms. One of the promi-
nent fields of study where statistical model selection criteria
are extensively used is cluster analysis [11–18]. In cluster
analysis, estimating the number of data clusters, known as
cluster enumeration, poses a major challenge.
Despite the fact that the original Bayesian Information Crite-
rion (BIC) [8,10] is generic, it has been widely used in the lit-
erature, without questioning its validity, to estimate the num-
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ber of clusters in an observed data set [11–15,17,18]. To miti-
gate this short coming, we have recently proposed a Bayesian
cluster enumeration criterion, BICN, which is specifically de-
rived for cluster analysis problems [19]. The original BIC
(BICO) and BICN have the same data fidelity terms. But,
their penalty terms are significantly different. Incorporating
the cluster analysis problem in the derivation of the BIC has
shown to be useful in estimating the number of clusters in data
sets with overlapping and unbalanced clusters [19].
Like many model selection criteria in the literature, BICN is
derived under asymptotic assumptions on the size of the ob-
served data. However, in the finite sample regime, the asymp-
totic assumptions made by BICN, to arrive at a computation-
ally simple penalty term, are violated. Hence, we propose an
extension of BICN for the finite sample regime by removing
the asymptotic assumptions. The proposed cluster enumer-
ation criterion, BICNF, contains the data fidelity and penalty
terms of BICN plus additional penalty terms. BICNF is able
to satisfactorily estimate the number of data clusters in data
sets with small sample sizes and in the asymptotic regime it
behaves similar to BICN. The proposed cluster enumeration
algorithm is a two-step approach which uses the Expectation
Maximization (EM) algorithm to cluster the observed data set
according to the specifications of a candidate model prior to
the calculation of BICNF for that particular model.
The paper is organized as follows. Section 2 formulates the
cluster enumeration problem. Section 3 discusses the pro-
posed cluster enumeration algorithm. Performance evaluation
of the proposed criterion and comparisons to existing clus-
ter enumeration criteria using synthetic data examples is pro-
vided in Section 4. Section 5 concludes the paper.

2. PROBLEM FORMULATION

Let xk ∼ N (µk,Σk), for k ∈ K , {1, . . . ,K}, denote in-
dependent and identically distributed multivariate Gaussian
random variables, where K is the number of clusters and
µk ∈ Rr×1 and Σk ∈ Rr×r represent the centroid and co-
variance matrix of the kth cluster, respectively. The realiza-
tions of xk, denoted by xn ∈ Rr×1, for n = 1, . . . , Nk,
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create a cluster Xk with parameters θk = [µk,Σk]
>. Con-

sider that the observed data set is a collection of the clus-
ters Xk, k ∈ K, such that X , {X1, . . . ,XK} ⊂ Rr×N ,
where N � r and N =

∑K
k=1Nk. The clusters Xk, k ∈

K, are independent, mutually exclusive, and non-empty. Let
M , {MLmin , . . . ,MLmax} be a family of candidate mod-
els. Each candidate model Ml, for l = Lmin, . . . , Lmax, rep-
resents a partition of X into l clusters with associated cluster
parameters Θl = [θ1, . . . ,θl] which lies in a parameter space
Ωl ⊂ Rq×l. Our research goal is to estimate the number of
clusters inX given a family of candidate modelsM assuming
that the true number of clusters in X satisfies the constraint
Lmin ≤ K ≤ Lmax.
We have recently derived the BIC from first principles by
formulating the cluster enumeration problem as a maximiza-
tion of the posterior probability of candidate models given
data [19]. For a data set X with multivariate Gaussian dis-
tributed random variables

BICN(Ml) =

l∑
m=1

Nm lnNm −
l∑

m=1

Nm

2
ln
∣∣∣Σ̂m

∣∣∣
− q

2

l∑
m=1

lnNm, (1)

where Nm represents the number of data vectors in Xm, Σ̂m

is the covariance matrix estimate of the mth cluster, and q =
1
2r(r + 3) denotes the number of parameters estimated per
cluster. The first two terms on the right hand side of Eq. (1)
are data fidelity terms and the last term is the penalty term.
In [19], the penalty term was derived from the expression

1

2

l∑
m=1

ln
∣∣∣Ĵm

∣∣∣ (2)

by making asymptotic assumptions on the size of X to sim-
plify the computation of ln

∣∣∣Ĵm

∣∣∣, where Ĵm is the observed
Fisher Information Matrix (FIM) of the mth cluster. For
small sample sizes, BICN tends to select incorrect models.
Hence, we derive the penalty term of BICN for the finite sam-
ple regime by removing the asymptotic assumptions made to
simplify Eq. (2).

3. PROPOSED BAYESIAN CLUSTER
ENUMERATION CRITERION WITH FINITE

SAMPLE PENALTY TERM

The observed FIM of the mth cluster is defined as

Ĵm , −d
2 lnL(θm|Xm)

dθmdθ>m

∣∣∣∣
θm=θ̂m

∈ Rq×q, (3)

where θm denotes the parameters of the mth cluster and
L(θm|Xm) is the likelihood function. Since we are assum-
ing that the data vectors in X are multivariate Gaussian

distributed, lnL(θm|Xm) can be written as

lnL(θm|Xm) = Nm ln
Nm

N
− rNm

2
ln 2π − Nm

2
ln |Σm|

− 1

2
Tr
(
Σ−1m ∆m

)
, (4)

where ∆m ,
∑
xn∈Xm

(xn − µm) (xn − µm)
>. Since the

covariance matrix of themth cluster, Σm, is a symmetric ma-
trix, the relation vec(Σm) = Dum holds [20, pp. 56–57].
vec(Σm) ∈ Rr2×1 denotes the stacking of the elements of
Σm into one long column vector. The unique elements of
Σm are stored in um ∈ R 1

2 r(r+1)×1 and D ∈ Rr2× 1
2 r(r+1)

represents the duplication matrix of Σm. The duplication ma-
trix,D, is calculated as [21]

D> =
∑
i≥j

vijvec (Yij)
>
, (5)

where 1 ≤ j ≤ i ≤ r, vij ∈ R 1
2 r(r+1)×1 is a unit vector with

one at its (j − 1)r + i− 1
2j(j − 1) entry and zero elsewhere

and Yij ∈ Rr×r is given by

Yij =

{
Eii, i = j

Eij +Eji, i 6= j
, (6)

where Eij contains one at its i, jth entry and zero elsewhere.
Taking the symmetry of Σm into account the parameter vec-
tor θm = [µm,Σm]

> is replaced by θ̌m = [µm,um]
>.

A straight forward calculation of the second derivative of
lnL(θm|Xm) with respect to θ̌m, see [19] for details, results
in

d2 lnL(θm|Xm)

dθ̌mdθ̌>m
=
Nm

2

(
dum

dum

)>
D>VmD

dum

du>m

−
(
dum

du>m

)>
D>WmD

dum

dum

−Nm

(
dum

dum

)>
D>Zmvec

(
dµ>m
dµ>m

)
−Nm

dµ>m
dµm

Σ−1m

dµm

dµ>m
, (7)

where

Vm , Σ−1m ⊗Σ−1m ∈ Rr2×r2 (8)

Wm , Σ−1m ⊗Σ−1m ∆mΣ−1m ∈ Rr2×r2 (9)

Zm , Σ−1m (x̄m − µm)⊗Σ−1m ∈ Rr2×r. (10)

Here, x̄m , 1
Nm

∑
xn∈Xm

xn is the sample mean of the data
vectors that belong to the mth cluster. A compact matrix rep-
resentation of Ĵm is given by

Ĵm =

−∂2 lnL(θ̂m|Xm)
∂µm∂µ>

m
−∂2 lnL(θ̂m|Xm)

∂µm∂u>
m

−∂2 lnL(θ̂m|Xm)
∂um∂µ>

m
−∂2 lnL(θ̂m|Xm)

∂um∂u>
m

 (11)
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The maximum likelihood estimator of the mean and covari-
ance matrix of the mth Gaussian cluster are given by

µ̂m =
1

Nm

∑
x∈Xm

xn (12)

Σ̂m =
1

Nm

∑
xn∈Xm

(xn − µ̂m) (xn − µ̂m)
>
. (13)

Hence, simplifying Eq. (7) using Eqs. (12) and (13) results in

Ĵm =

[
NmΣ̂−1m 0r× 1

2 r(r+1)

0 1
2 r(r+1)×r

Nm

2 D
>F̂mD

]
, (14)

where F̂m , Σ̂−1m ⊗ Σ̂−1m ∈ Rr2×r2 and 0 1
2 r(r+1)×r ∈

R 1
2 r(r+1)×r is a zero matrix. Using this result, the BIC of the

candidate model Ml with finite sample penalty term, referred
to as BICNF(Ml), can be written as

BICNF(Ml) =

l∑
m=1

Nm lnNm −
l∑

m=1

Nm

2
ln
∣∣∣Σ̂m

∣∣∣
− 1

2

l∑
m=1

ln
∣∣∣Ĵm

∣∣∣
=

l∑
m=1

Nm lnNm −
l∑

m=1

Nm

2
ln
∣∣∣Σ̂m

∣∣∣
− 1

4
r(r + 3)

l∑
m=1

lnNm +
1

4
r(r + 1)l ln 2

+
1

2

l∑
m=1

ln
∣∣∣Σ̂m

∣∣∣− 1

2

l∑
m=1

ln
∣∣∣D>F̂mD

∣∣∣ .
(15)

Comparing Eqs. (1) and (15) we notice that

BICNF(Ml) = BICN(Ml) +
1

4
r(r + 1)l ln 2

+
1

2

l∑
m=1

ln
∣∣∣Σ̂m

∣∣∣− 1

2

l∑
m=1

ln
∣∣∣D>F̂mD

∣∣∣ .
(16)

Unlike BICN and BICO, the penalty term of BICNF depends on
the covariance matrix of the individual clusters in Ml ∈ M.
This allows the proposed criterion, BICNF, to lower the penalty
term when the determinant of the covariance matrices are high
and penalize more severely when they are low. The calcula-
tion of BICNF(Ml) using Eq. (16) requires the estimation of
the covariance matrix, Σm, and the number of data vectors
per cluster, Nm, for m = 1, . . . , l. Algorithm 1 shows the
proposed two-step approach which uses the EM algorithm to
estimate cluster parameters prior to the calculation of BICNF.

The additional complexity of BICNF(Ml) compared to

Algorithm 1 Proposed two-step cluster enumeration algo-
rithm

Inputs: data set X ; set of candidate models M ,
{MLmin , . . . ,MLmax}
Calculate the duplication matrixD via Eq. (5)
for l = Lmin, . . . , Lmax do

for m = 1, . . . , l do
Estimate Σm using the EM algorithm
Estimate Nm via hard clustering [19]

end for
calculate BICNF(Ml) using Eq. (16)

end for
Estimate the number of clusters in X :
K̂ = arg max

l=Lmin,...,Lmax

BICNF(Ml)

BICN(Ml) comes from the term 1
2

∑l
m=1 ln

∣∣∣D>F̂mD
∣∣∣.

The duplication matrix D is computed only once, and thus it
can be ignored in the complexity analysis. Hence, the excess
computational cost is O(lr6).
Note that the penalty term of BICNF contains covariance ma-
trix estimate of each cluster in Ml ∈ M. If the observations
span a large range of values, then the covariances of individ-
ual clusters are very large and their inverses become close to
zero. As a result, the penalty term of the proposed criterion,
BICNF, might go to infinity. Hence, in such cases, we recom-
mend normalizing the data prior to the estimation of cluster
parameters.

4. RESULTS

4.1. Performance Measures

The two main performance measures used to compare dif-
ferent Bayesian cluster enumeration criteria are the empirical
probability of detection

pdet =
1

MC

MC∑
s=1

1{K̂s=K}, (17)

where MC is the number of Monte-Carlo experiments and
1{K̂s=K} is the indicator function given by

1{K̂s=K} ,

{
1, if K̂s = K

0, otherwise
, (18)

and the Mean Absolute Error (MAE), which is computed as

MAE =
1

MC

MC∑
s=1

∣∣∣K − K̂s

∣∣∣ . (19)

We also consider the empirical probability of over estimation
pover, which is the probability that K̂ > K, as an additional
performance measure.
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4.2. Simulation Setup

In all simulations, we assume thatM , {MLmin , . . . ,MLmax}
is given with Lmin = 1 and Lmax = 2K, where K is the true
number of data clusters in X . All simulation results are an
average of 1000 Monte-Carlo experiments. We compare our
proposed criterion, BICNF, with BICN and BICO. The com-
pared criteria use the same implementation of EM algorithm.
For Data-1, we generate realizations of the random vari-
able xk ∼ N (µk,Σk), for k = 1, . . . , 5, with cluster
centroids µ1 = [−2, 0]>, µ2 = [5, 0]>, µ3 = [0, 7]>,
µ4 = [8, 4]>, µ5 = [3, 10]>, and covariance matrices Σ1 =
diag (0.2, 0.2), Σ2 = diag (0.6, 0.6), Σ3 = diag (0.4, 0.4),
Σ4 = diag (0.2, 0.2), Σ5 = diag (0.3, 0.3), where diag(a, b)
puts a and b in the main diagonal of a 2 × 2 matrix and
sets the off-diagonal elements to zero. Data-2 contains re-
alizations of the random variable xk ∼ N (µk,Σk), for
k = 1, . . . , 6, with µ1 = [−1, 0, 7]>, µ2 = [3, 0, 8]>, µ3 =
[0, 5, 1]>, µ4 = [9, 4, 4]>, µ5 = [3, 9, 5]>, µ6 = [5, 5, 1.5]>,
and Σ1 = diag (0.6, 1.2, 0.6), Σ2 = diag (1.8, 0.9, 1.5),
Σ3 = diag (1.2, 0.6, 0.3), Σ4 = diag (0.9, 0.9, 0.9), Σ5 =
diag (0.9, 1.5, 0.9), Σ6 = diag (1.2, 1.2, 1.2).

4.3. Simulation Results

Comparison of the three Bayesian cluster enumeration crite-
ria as a function of the number of data vectors per cluster,
Nk, k ∈ K, for Data-1 is given in Table 1. The proposed cri-
terion, BICNF, outperforms the other criteria when the number
of data vectors per cluster is small and it exhibits a very small
MAE. The empirical probability of over estimation, pover, of
BICN and BICO is very high especially when the number of
data vectors per cluster is small. As expected the cluster num-
ber estimates of all compared criteria converge to the correct
number of clusters, K = 5, when the number of data vec-
tors per cluster increases. A comparison of the penalty terms
of the different criteria when the number of data vectors per
cluster Nk = 10 is shown in Fig. 1. BICNF penalizes over
estimation more severely than the other criteria.

Next, we compare the cluster enumeration performance of

Table 1. Comparison of different Bayesian cluster enumera-
tion criteria for Data-1.

10 50 100 1000

pdet(%)
BICNF 77.6 100 100 100
BICN 0 77.8 96.2 100
BICO 26.4 99.3 99.7 100

pover(%)
BICNF 0 0 0 0
BICN 100 22.2 3.8 0
BICO 73.1 0.7 0.3 0

MAE
BICNF 0.228 0 0 0
BICN 4.768 0.483 0.043 0
BICO 2.461 0.007 0.003 0

1 2 3 4 5 6 7 8 9 10

Number of clusters specified by the candidate models
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Fig. 1. The penalty terms of different Bayesian cluster enu-
meration criteria for Data-1 when Nk = 10.

Table 2. Comparison of different Bayesian cluster enumera-
tion criteria for Data-2.

50 100 250 1000

pdet(%)
BICNF 82.1 96.7 98.7 99.3
BICN 64.7 92.9 98.1 99.3
BICO 51.7 91.1 98.7 99.3

pover(%)
BICNF 0.6 0.6 0.6 0.2
BICN 30.9 5.7 1.3 0.2
BICO 0 0.2 0.2 0

MAE
BICNF 0.19 0.033 0.013 0.007
BICN 0.851 0.079 0.019 0.007
BICO 0.602 0.089 0.013 0.007

different criteria for Data-2 by setting the number of data vec-
tors per cluster to one of the values in {50, 100, 250, 1000}.
BICNF outperforms the other criteria when Nk is small and it
exhibits a small MAE. For small values ofNk, BICN performs
better than BICO, while BICO tends to under estimate the num-
ber of clusters. Similar to the results of Data-1, asymptoti-
cally, all cluster enumeration criteria behave satisfactorily.

5. CONCLUSION

We propose a Bayesian cluster enumeration criterion whose
penalty term is derived for the finite sample regime. Further,
the proposed criterion is integrated into a two-step algorithm
to provide an optimal estimate of the number of data clusters.
Simulation results confirm the strength of the proposed cri-
terion for estimating the number of clusters in data sets with
small sample sizes. Our proposed criterion, BICNF, achieves
good performance results with a small additional computa-
tional complexity compared to BICN.
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[1] P. M. Djurić, “Asymptotic MAP criteria for model se-
lection,” IEEE Trans. Signal Process., vol. 46, no. 10,
pp. 2726–2735, Oct. 1998.

[2] G. Claeskens and N. L. Hjort, Model Selection and
Model Averaging, Cambridge University Press, New
York, 2008.

[3] G. Claeskens and N. L. Hjort, “The focused information
criterion,” J. Am. Stat. Assoc., vol. 98, no. 464, pp. 900–
916, Dec. 2003.

[4] H. Akaike, “Information theory and an extension of the
maximum likelihood principle,” in 2nd Int. Symp. Inf.
Theory, 1973, pp. 267–281.

[5] E. J. Hannan and B. G. Quinn, “The determination of
the order of an autoregression,” J. R. Statist. Soc. B, vol.
41, no. 2, pp. 190–195, 1979.

[6] D. J. Spiegelhalter, N. G. Best, B. P. Carlin, and
A. van der Linde, “Bayesian measures of model com-
plexity and fit,” J. R. Statist. Soc. B, vol. 64, no. 4, pp.
583–639, 2002.

[7] J. Rissanen, “Modeling by shortest data description,”
Automatica, vol. 14, pp. 465–471, 1978.

[8] G. Schwarz, “Estimating the dimension of a model,”
Ann. Stat., vol. 6, no. 2, pp. 461–464, 1978.

[9] C. M. Hurvich and C.-L. Tsai, “Regression and time
series model selection in small samples,” Biometrika,
vol. 76, no. 2, pp. 297–307, June 1989.

[10] J. E. Cavanaugh and A. A. Neath, “Generalizing the
derivation of the Schwarz information criterion,” Com-
mun. Statist.-Theory Meth., vol. 28, no. 1, pp. 49–66,
1999.

[11] D. Pelleg and A. Moore, “X-means: extending K-means
with efficient estimation of the number of clusters,” in
Proc. 17th Int. Conf. Mach. Learn. (ICML), 2000, pp.
727–734.

[12] M. Shahbaba and S. Beheshti, “Improving X-means
clustering with MNDL,” in Proc. 11th Int. Conf.
Inf. Sci., Signal Process. and Appl. (ISSPA), Montreal,
Canada, 2012, pp. 1298–1302.

[13] T. Ishioka, “An expansion of X-means for automatically
determining the optimal number of clusters,” in Proc.
4th IASTED Int. Conf. Comput. Intell., Calgary, Canada,
2005, pp. 91–96.

[14] Q. Zhao, V. Hautamaki, and P. Fränti, “Knee point de-
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[15] Q. Zhao, M. Xu, and P. Fränti, “Knee point detection on
Bayesian information criterion,” in Proc. 20th IEEE Int.
Conf. Tools with Artificial Intell., Dayton, USA, 2008,
pp. 431–438.

[16] T. Huang, H. Peng, and K. Zhang, “Model selection for
Gaussian mixture models,” Statistica Sinica, vol. 27, no.
1, pp. 147–169, 2017.

[17] A. Mehrjou, R. Hosseini, and B. N. Araabi, “Improved
Bayesian information criterion for mixture model selec-
tion,” Pattern Recognit. Lett., vol. 69, pp. 22–27, Jan.
2016.

[18] F. K. Teklehaymanot, M. Muma, J. Liu, and A. M.
Zoubir, “In-network adaptive cluster enumeration for
distributed classification/labeling,” in Proc. 24th Eur.
Signal Process. Conf. (EUSIPCO), Budapest, Hungary,
2016, pp. 448–452.

[19] F. K. Teklehaymanot, M. Muma, and A. M. Zoubir, “A
novel Bayesian cluster enumeration criterion for unsu-
pervised learning,” IEEE Trans. Signal Process. (under
review), [Online-Edition: https://arxiv.org/abs/
1710.07954v2], 2018.

[20] J. R. Magnus and H. Neudecker, Matrix Differential
Calculus with Applications in Statistics and Economet-
rics (3 ed.), Wiley Series in Probability and Statistics.
John Wiley & Sons Ltd, Baffins Lane, Chichester, West
Sussex PO19 1UD, England, 2007.

[21] J. R. Magnus and H. Neudecker, “The elimination ma-
trix: some lemmas and applications,” SIAM J. Algebraic
Discrete Meth., vol. 1, no. 4, pp. 422–449, Dec. 1980.

4278


