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ABSTRACT

A technique is presented for combining arbitrary empirical

probability density estimates whose interdependencies are un-

specified. The underlying estimates may be, for example, the

particle approximations of a pair of particle filters. In this

respect, our approach provides a way to obtain a new parti-

cle approximation, which is better in a precise information-

theoretic sense than that of any of the particle filters alone.

The viability of the proposed approach is demonstrated in a

multiple object tracking scenario.

1. INTRODUCTION

One of the challenges in multiagent/networked systems is to

integrate data from several intelligent platforms for enhanc-

ing and coordinating their actions. Networked systems are

expected to be resilient to varying environmental parameters

and uncertainties. This will usually be manifested in a design

with the capacity to alter the underlying network topology in

response to external variations and possible malfunctions [1].

The network topology is the communication infrastructure by

which the entities “talk” with one another and hence governs

the emergence of intelligent behaviour of the network as a

whole [2, 3].

Adaptive network systems require equally flexible infor-

mation fusion paradigms [4, 5, 6, 7, 8, 9]. In a large-scale

sensor network the nodes’ energy consumption and the ca-

pacity of the network as a whole to adapt to variations in its

environment are particularly important [4]. Such a network

may consist of a large number of sensors each having a mod-

est information processing capability. Typically, a sensor will

run its own estimation algorithm such as a Kalman filter [6, 9]

or a particle filter (PF) [10]. This approach leads to decentral-

ized or distributed information fusion.

Distributed estimation schemes rely on the dissemination

of measurements and other statistics across the network. The

distributed PFs schemes in [10] employ approximate like-

lihoods to alleviate the communication overhead when ex-

changing raw data between nodes. In some consensus-based

approaches, global estimates are gradually approached in
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nodes through an iterative procedure in which they exchange

their local estimates [6, 11]. Distributed PF schemes may

communicate particles and weights. Alternatively, they may

communicate the parameters of a Gaussian mixture model

(GMM) which approximates the underlying filtering density.

The first approach may be inefficient when the number of

particles in each PF is large. The latter approach similarly

becomes impractical for high-dimensional states and many

Gaussian components. [12].

In networks with hundreds and thousands of sensors, mea-

surements and other statistics from different nodes may occa-

sionally be integrated in some principle nodes where their in-

terdependencies are ignored [9]. This sometimes leads to sta-

tistically inconsistent estimators which are prone to diverge.

The reason for this is known as double counting [13]; unspec-

ified interdependencies may allow an old piece of informa-

tion (one which has already been processed) to be reprocessed

when it recurs in the data collected from another sensor.

A simple approach that addresses this problem is known

as covariance intersection (CI) [9, 14]. CI allows fusing a

pair of statistically consistent estimates of the same quan-

tity such that the resulting estimate is similarly consistent.

This technique, however, accounts only for the estimators’

first and second statistical moments (mean and covariance)

and may therefore be inadequate in the case of arbitrary non-

Gaussian probability density functions (pdf). For example,

CI cannot be used straightforwardly in such scenarios where

several sensors track a number of objects or even a single ob-

ject whose dynamical and observation models vary randomly

in time [15]. Moreover, in PF-based multiple object track-

ing algorithms the system’s state is represented by a random

finite set rather than a random vector, and so an underlying

covariance is not well-defined [16].

In the past years, several extensions of CI have been de-

vised for handling non-Gaussian pdfs. An approximate GMM

fusion scheme based on Chernoff information is described in

[17]. As mentioned there and in [18], this measure of dis-

crepancy between two probability densities has much to do

with CI, and in fact recovers its update equations in the Gaus-

sian case. A similar approach is applied for multiple object

tracking using multi-Bernoulli filters in [19].

Here, we devise a technique, particles intersection, for

combining arbitrary empirical probability density estimates
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whose interdependencies are unspecified. The underlying

density estimates may be, for example, the particle approxi-

mations of a pair of PFs. In this respect, particles intersection

provides a way to obtain a new particle approximation, which

is better in a precise information-theoretic sense than that of

any of the PFs alone.

This paper is organized as follows. The next section

presents a general approach for fusing arbitrary probability

density estimators. Particles intersection, the application of

this fusion technique to the particle approximations of a pair

of PFs, is presented in Section 3. The utility of particles

intersection is demonstrated in Section 4 where a pair of

PFs are employed for tracking of a group of objects. Some

concluding remarks are offered in the last section.

2. FUSION OF PROBABILITY DENSITY ESTIMATORS

Let f(x) and g(x) be two estimators of the probability den-

sity function (pdf) h(x) of some real-valued random vector

X whose realization is x. We wish to obtain another estima-

tor, q(x), which accounts for the information in both these

estimators. Here, we construct this q(x) as

q(x) =
f(x) ⊲α g(x)

∫

f(y) ⊲α g(y)dy
(1)

where the operation, f ⊲α g
def
= fαg1−α, and α ∈ [0, 1]. Some

properties of (1) have been pointed out in several works. For

example, it is known that for Gaussian f(x) and g(x), the ob-

tained q(x) is also a Gaussian whose mean and covariance are

given by the CI method [20, 17, 18]. CI has been shown to

maintain statistical consistency in the sense that if the covari-

ances Pf and Pg with respect to the pdfs f(x) and g(x) are

such that Pf −Ph and Pg −Ph are positive semidefinite then

Pq − Ph is similarly positive semidefinite. In [18] the oper-

ation ⊲α was shown to generate an algebraic structure which

facilitates the application of (1) for large networks with many

different pdf estimators. The geometric interpretation of (1)

as a point along a geodesic in a statistical manifold was dis-

cussed in [20].

Nevertheless, other statistical properties of (1) or why

such an approach should be used in the first place remained

an open issue. The next results establish the significance of

(1) from an information-theoretic perspective.

The three density estimators satisfy,

KL (q ‖ h) = αKL (f ‖ h) + (1− α)KL (g ‖ h)− Iα(f, g)
(2)

whereKL(q ‖ h)
def
=

∫

q(x) log(q(x)/h(x))dx is the Kullback-

Leibler (KL) divergence of q(x) and h(x), and

Iα(f, g)
def
= log

∫

f(x) ⊲α g(x)dx ≥ 0 (3)

is known as the Chernoff information of f(x) and g(x). Much

like the KL-divergence, Iα(f, g) quantifies the discrepancy

between f(x) and g(x). The larger this measure is, the closer

q(x) gets to h(x) for KL(q ‖ h) becomes smaller. Moreover,

the next results shows that there is always such α for which

q(x) is not farther from h(x) than any of the estimators alone.

Theorem 1 (Consistency of KL) There exists an α ∈ [0, 1]
for which

KL(q ‖ h) ≤ min {KL (f ‖ h) , KL(g ‖ h)} (4)

Proof. From (2) it follows that whenever

Iα(f, g) ≥ (1− α) [KL (g ‖ h)−KL(f ‖ h)] (5)

the KL-divergence, KL (q ‖ h) ≤ KL (f ‖ h). Similarly, if

Iα(f, g) ≥ α [KL (f ‖ h)−KL(g ‖ h)] (6)

then KL(q ‖ h) ≤ KL(g ‖ h). Because one of the right-

hand sides, either in (5) or (6), is nonpositive, one of these

inequalities always holds. The remaining inequality can al-

ways be satisfied for some α ∈ [0, 1]. QED.

From (2) it is apparent that maximizing Iα(f, g) with re-

spect to α may in some cases lead to smaller KL(q ‖ h). The

Chernoff information, as distinct from other terms in (2), is

independent of the unknown h(x), and so such an optimiza-

tion can be carried out in practice,

αopt = argmax
α

Iα(f, g) (7)

3. PARTICLES INTERSECTION

We name particles intersection the application of (1) using

the empirical pdf representations obtained by a pair of PFs.

A PF is a numerical approximation technique for solving the

Bayesian filtering problem. Here, one is commonly interested

in obtaining pXk|Z0:k
(xk | z0:k), the conditional pdf of the

system’s state at time k, represented by the random vector

Xk, given all observations up to that time, the set of random

vectors, Z0:k
def
= {Z1, . . . , Zk}. The output of a conventional

PF is a set of N samples (particles), {x
(i)
k }Ni=1, and corre-

sponding weights, {w
(i)
k }Ni=1,

∑

i w
(i)
k = 1, which together

provide an empirical estimate of the underlying filtering pdf,

πXk|Z0:k
(xk | z0:k) =

N
∑

i=1

w
(i)
k δ(xk − x

(i)
k ) (8)

where δ(·) is the Dirac delta function. The minimum mean

square error (MMSE) estimator, for example, can be approx-

imated this way as the weighted sum of all particles. For

brevity, random variables subscript as in (8) are omitted for

the rest of this paper.

Consider a pair of PFs, each with its own approximation

of the filtering pdf of the same system state. For example,

the two PFs may be tracking the same objects while being
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executed in different nodes within a sensor network. In a

standard distributed scheme the observation set at time k in

one node, z1k, may be shared with another node whose own

observation set is z2k, and vice versa. In each node, a PF em-

ploys the likelihoods p(z1k | xk) and p(z2k | xk, z
1
k). When

there are many sensors, however, it may be practically in-

feasible to disseminate the observations of one node to all

other nodes in the network. Moreover, the interdependencies

between observations, described by likelihoods of the form

p(zjk | xk, {zik}i6=j), where zjk is the observation set of the

jth node, may not be known. On the other hand, the parti-

cle approximations of the filtering pdfs at neighboring nodes

can always be combined in a (KL) consistent manner so as to

improve one another, as well as the PFs in other nodes.

Suppose that the pair of PFs exchange their particle ap-

proximations or communicate them to a third location, where

this information may be fused. The difficulty in applying (1)

to the approximated pdfs, π(xk | z10:k) and π(xk | z20:k),
may be appreciated by noting that in this case (1) involves

a product of two discrete pdfs. It now follows that q(xk)
vanishes unless xk coincides with the same particle in both

sets, {x
(i),1
k }i and {x

(i),2
k }i, where {x

(i),j
k }i is the particles

approximation of the jth PF. This issue may be alleviated by

using instead

πr(xk | zj0:k) ∝
N
∑

i=1

w
(i),j
k exp

{

−β ‖ xk − x
(i),j
k ‖22

}

(9)

for j = 1, 2, where β > 0 is a regularization parameter, and

‖ · ‖2 is the Euclidean norm.

Substituting (9) into (1) yields the approximation q(xk) ∝
πr(xk | z10:k) ⊲α πr(xk | z20:k). There are two ways how to

use this pdf estimate. We may employ a sampling technique

such as the Metropolis-Hastings to produce a new set of par-

ticles from q̂(xk), which would then substitute the particle

approximations in both PFs. Alternatively, we may substitute

the weights {w
(i),j
k }i of the jth PF for new (unnormalized)

weights {q(x
(i),j
k )}i. The latter approach, which is employed

in this work, saves the burden of producing a new set of parti-

cles per fusion operation. This interaction procedure is sum-

marized in Algorithm 1.

4. NUMERICAL STUDY

4.1. KL consistency

The application of (1) in the case of Gaussian mixtures has

already been discussed in [17]. Here, a similar example is

used for demonstrating the consequences of Theorem 1. We

pick a particular Gaussian mixture, h(x) = 1
4

∑4
i=1 N (x |

µi, σ
2
i ), and draw an increasing number, m, of samples from

it. Here, the means and variances are µi ∈ [−1, 1] and σ2
i ∈

[0.01, 0.1]. An expectation maximization (EM) algorithm is

then employed for estimating the parameters of h(x) based

Algorithm 1 Interaction via particles intersection

Input: {x
(i),1
k , w

(i),1
k }Ni=1 and {x

(i),2
k , w

(i),2
k }Ni=1

Output: {x
(i),1
k , v

(i),1
k }Ni=1 and {x

(i),2
k , v

(i),2
k }Ni=1

for j = 1 : N do

v̄
(j),1
k = πr(x

(j),1
k | z10:k) ⊲α πr(x

(j),1
k | z20:k)

v̄
(j),2
k = πr(x

(j),2
k | z10:k) ⊲α πr(x

(j),2
k | z20:k)

end for

for j = 1 : N do

v
(j),1
k = v̄

(j),1
k /

(

∑N

l=1 v̄
(l),1
k

)

v
(j),2
k = v̄

(j),2
k /

(

∑N

l=1 v̄
(l),2
k

)

end for

on these samples. Per m we repeat this procedure twice for

generating two set of different samples which are then used

by the EM to yield the density estimates f(x) and g(x). In

this example, α is numerically optimized such that Iα(f, g) is

maximized (7). The respective KL-divergences averaged over

70 Monte Carlo runs, where in each run new sets of samples

are drawn for m = 100 to m = 1000, are shown in Figure 1.
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0
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K
L

Fig. 1. The average KL-divergence KL (q ‖ h) (green), where q(x)
is given by (1), is smaller than the corresponding KL-divergences of

any of the density estimators f(x) and g(x) (red and blue). The

black line shows the corresponding KL-divergence of an ideal den-

sity estimator that uses the data sets of both estimators.

4.2. Particles intersection for multiple object tracking

In what follows we demonstrate the utility of particles inter-

section in a distributed tracking scenario. A pair of sequential

importance resampling (SIR) PFs are employed for tracking

a variable number of objects. Like in [21], the ith extended

object in the scene is represented by a two-dimensional Gaus-

sian N (· | µi
k, C

i
k), whose mean µi

k and 2 × 2 covariance

Ci
k correspond to the location and spatial extent of the ob-

ject at time k. When a number of objects, not greater than

n, appear together, this representation amounts to a Gaus-

sian mixture, L(z | xk) ∝
∑n

i=1 e
i
kN (z | µi

k, C
i
k), where

4271



xk
def
= {{µi

k}
n
i=1, {C

i
k}

n
i=1, {e

i
k}

n
i=1}. Here, eik ∈ {0, 1} is a

realization of a Bernoulli random variable indicating whether

or not the ith object is present at time k. The likelihood func-

tion used by the jth PF is

p(Zj
k | xk) =

m
j

k
∏

i=1

L(zjk(i) | xk) (10)

where Zj
k

def
= {zjk(i)}

m
j

k

i=1 denotes a set of mj
k statistically in-

dependent observations at time k.

The evolution of objects’ positions, spatial extent, and

indicators is described similarly to [21] by a discrete-time

Markov process,

p(xk+1 | xk) = p(µk+1 | µk)p(Ck+1 | Ck)p(ek+1 | ek)
(11)

where p(x0) is known. The PFs approximate the filtering pdfs

p(xk | Zj
0:k), j = 1, 2, where Zj

0:k
def
= {Zj

0 , . . . ,Z
j
k}, from

which the underlying MMSE estimators are obtained.

A Gazebo environment is used for generating a realistic

scenario where the movement of four robotic platforms are

recorded by laser scanners at two different locations. One

of the laser scanners is used for producing the set Z1
k of point

observations, and another for producing the set Z2
k . These ob-

servations are contaminated with a zero-mean Gaussian white

noise whose standard deviation is 0.03 in both coordinates.

There are mj
k = 20 observations in each set of which 10 per-

cent represent clutter uniformly distributed in the sensor field

of view. In this scenario a robot may appear or disappear

at some predetermined times to which the PFs are oblivious.

The parameters underlying the time propagation models in

the PFs are the same as those used in the synthetic example in

[21]. The regularization parameter β in (9) is taken as 0.7.

The proposed interaction scheme has been analyzed in the

above tracking scenario based on 100 Monte Carlo runs. In

each run the initial particles of each PF are drawn from a

Gaussian mixture whose parameters are obtained by the K-

means algorithm using the first set of observations. Several

PFs, each with N = 150 particles, are employed: a pair of

PFs which interact through particles intersection, another pair

of PFs that use the same observations but which do not inter-

act, and a centralized PF that uses the observations from both

laser sensors. The interaction between the two PFs, one which

is fed with Z1
k and another with Z2

k , is carried out as described

in Algorithm 1. For comparison, a standard CI is also imple-

mented using corresponding state estimates and covariances

of individual objects from both non-interacting PFs.

The mean square estimation errors (MSE) of the various

PFs are shown in Figure 2. The advantage of the interacting

PFs over their non-interacting counterparts is apparent in this

figure. In contrast, the standard CI technique, which is also

shown, exhibits MSE errors no better and occasionally worse

than those of the non-interacting PFs. The visible peaks in

this figure reflect changes in the actual number of objects. As

shown in Figure 3, the accuracy of the estimated number of

objects by one of the interacting PFs is better than that of any

of the non-interacting PFs.
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Fig. 2. MSE errors evaluated using 100 Monte Carlo runs. The per-

formance of a centralized PF that uses observations from both laser

scanners is shown in black. The estimation errors of the interacting

PFs are shown as the solid red and blue lines. The respective es-

timation errors of the non-interacting PFs are shown by the dashed

red and blue lines. The MSE errors of the CI technique is shown in

green.
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Fig. 3. Estimated (colored lines) and actual (black line) number of

objects. The red and blue lines are the estimated number of objects

averaged over 100 Monte Carlo runs of the non-interacting PFs. The

respective estimate of one of the interacting PFs is shown in green.

5. CONCLUSIONS

In this paper, a technique named particles intersection is pro-

posed for fusing the empirical pdf approximations of a pair

of PFs. It relies on a fusion approach of which covariance in-

tersection is a special case. The pdf estimate obtained using

particles intersection is shown here to be closer in terms of

KL-divergence to the actual pdf than any of the pdf estima-

tors alone. The viability of this technique is demonstrated in

a scenario where a pair of PFs track a group of objects.
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