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ABSTRACT
In this paper, we consider the problem of sparse signal de-
tection with compressed measurements in a Bayesian frame-
work. Multiple nodes in the network are assumed to ob-
serve sparse signals. Observations at each node are com-
pressed via random projections and sent to a centralized fu-
sion center. Motivated by the fact that reliable detection of
the sparse signals does not require complete signal recon-
struction, we propose two computationally efficient methods
for constructing decision statistics for detection. First, using
the Laplace prior directly to impose sparsity as widely con-
sidered in Bayesian Compressive Sensing (BCS), we develop
an average likelihood ratio based detection method where the
average is taken over the Laplace probability density func-
tion. Second, we exploit a three-stage hierarchical prior on
the signal and construct decision statistics based on the noisy
reconstruction (partial estimates) of the signals. Experimen-
tal results show that both average likelihood-based detection
method and noisy-reconstruction based methods outperform
most of the state-of-the-art algorithms.

Index Terms— Sparse signal detection, Bayesian com-
pressive sensing, Laplace prior, multiple measurement vec-
tors 1. INTRODUCTION
Detection of a sparse signal in the presence of noise from
compressed measurements is one of the important inference
tasks in signal processing and has many applications includ-
ing sensor networks, cognitive radio networks, and radar net-
works. This problem has been investigated using the theo-
ries developed for sparse signal reconstruction [1–3]. These
works have focused on deriving performance bounds on the
probability of detection [1, 4–8], developing detection algo-
rithms [2, 3, 6, 9–12], and design of measurement matrices
[13–15].

Most of the available detection algorithms use a deter-
ministic sparse signal model. In this work, we consider
the Bayesian Compressive Sensing (BCS) framework. The
Laplace density as a sparsity prior, as has been well discussed
in the literature [16, 17], is used to model the sparse signals.
Our goal is to develop robust detection algorithms with better
detection performance and with less computational complex-
ity compared than the existing works in the literature [3, 7].
In [7], the authors have modeled sparse signals as a random
process and an approach to detect the sparse signals based on
a single compressive measurement vector is proposed with-
out reconstructing the signal. In this work, we consider a

more general multiple measurement vectors (MMVs) based
detection problem that employs signal model that is different
from [7].

The sparsity prior of the signals is exploited in different
ways to develop detection algorithms. First, considering the
Laplace prior on the signals, we develop the average likeli-
hood ratio test where the average is taken over Laplace prob-
ability density function (pdf). Though this method is compu-
tationally efficient, averaging the signal over the Laplace den-
sity may result in some loss in detection performance. Sec-
ond, we propose two methods based on partial signal recon-
struction to improve the detection performance compared to
the first approach. In these methods, we use a three-stage hier-
archical prior similar to [16]. The first two stages of the three-
stage hierarchical prior result in the Laplace prior on the sig-
nal. Based on this framework, we propose a detection method
where the energy of the partial estimate of signals obtained
using Multitask BCS [17], is used to compute the decision
statistics. Next, we aim to reduce the computational complex-
ity by proposing a projection based detection method. In this
approach, the detection decision is made based on the energy
of the signal projected on the subspace spanned by the col-
umn vectors of measurement matrix indexed by the estimated
support set. Experimental results show that likelihood-based
detection method and projection-based method have better (or
at least comparable) detection performance with less compu-
tational requirements when compared to the state-of-the-art
methods.

2. PROBLEM FORMULATION
We consider a distributed network with P nodes that observe
the sparse signals. The observation model at the p-th node un-
der hypothesis H1, (the signal is present) and H0 (the signal
is absent) is given by

H1 : zp = xp + ηp

H0 : zp = ηp (1)

for p = 1, · · · , P. Each xp, for p = 1, · · · , P , is an unknown
sparse signal which we model as a random signal. To impose
sparsity, a Laplace prior is assigned to the signal. Also, sig-
nals xp for p = 1, · · · , P are assumed to be independent of
each other. The noise vectors ηp, p = 1, · · · , P are assumed
to be Gaussian with ηp ∼ N (0, σ2

ηIN ). All the nodes com-
press their observations and report the compressed measure-
ments to a centralized fusion center (FC). The compressed
observation matrix at the FC can be represented as
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Y = ΦZ +W (2)

where Φ is an M ×N(M < N) projection matrix, Z =
[z1, · · · , zP ], andW = [w1, · · · ,wP ]. Noise vectors wp,
p = 1, · · · , P are assumed to be i.i.d. Gaussian distributed
with mean zero and covariance matrix σ2

wIM . The detection
problem in (1) with compressed observation in (2) reduces to

H1 : Y = ΦX +N

H0 : Y = N (3)

where X = [x1, · · · ,xP ],N = [n1, · · · ,nP ] and np =
Φηp + wp. The rows of Φ are assumed to be orthogonal.
Hence, np is i.i.d. Gaussian with zero mean and covariance
matrix σ2

0IM where σ2
0 = σ2

η + σ2
w.

3. SPARSE SIGNAL DETECTION WITH LAPLACE
PRIOR

In this section, we solve (3) without complete reconstruc-
tion of X . We consider the Laplace pdf as the sparsity prior
on the unknown signals in two different ways. First, by di-
rectly using an i.i.d. Laplace pdf, the average likelihood ra-
tio based method is proposed. Second, two detection algo-
rithms with noisy reconstruction (partial estimate) of the sig-
nals are proposed using a three-stage hierarchical prior on the
signals [16].

3.1. Likelihood Ratio Based Detection (LR-MMV)
In this subsection, we develop the likelihood ratio based ap-
proach for the detection problem when MMVs are available
at a centralized FC. With Laplace prior, we have p(xp) =

(λ/2)Nexp(−λ
∑N
n=1 |xp,n|) where λ is a scale parameter

which is assumed to be unknown. Sparse signal reconstruc-
tion from this Laplace prior does not allow tractable Bayesian
analysis [16]. Since we focus only on detection, complete
signal reconstruction is not necessary. We define the likeli-
hood ratio conditioned on the sparse signal matrix, X , as,
L = p(Y |X,λ,H1)

p(Y |H0) . We, then, average the signals using the
prior pdf for the signal to get ΛMMV (λ), and finally optimize
it over λ. Hence, the average likelihood ratio is given by

ΛMMV (λ) =

∫
L p(X|λ) dX =

∫
p(Y |X, λ,H1)p(X|λ)dX

p(Y |H0)

=

∫ β(λ)exp(−(

∑P
p=1 ‖yp−Φxp‖22

2σ2
0

− λ
∑N
n=1

∑P
p=1 |xp,n|))

exp(−(

∑P
p=1 ‖yp‖22

2σ2
0

))

dX

=

∫
β(λ)exp(−

∑P
p=1(xTp ΦTΦxp − 2yTp Φxp + 2σ2

0λ1T |xp|)
2σ2

0

)dX,

where β(λ) = (λ/2)NP , and |xp| = [|xp,1|, · · · , |xp,N |]T .
When the elements of the Φ matrix are random variables with
zero mean and the rows of Φ are orthogonal, we approximate
ΦTΦ ≈ M

N IN . Now, ΛMMV (λ) can be written as

ΛMMV (λ) = β(λ)∫
exp(−

∑P
p=1(M

N
xTp xp − 2yTp Φxp + 2σ2

0λ1T |xp|)
2σ2

0

)dX =
P∏
p=1

Λp,

(4)

where Λp = (λ/2)N
∫
dxp exp(−

M
N xT

p xp−2vT
p xp+2σ2

0λ1
T |xp|

2σ2
0

)

and vp is defined as yTp Φ = vTp . Let

Ip,n =
∫
dxp,n exp(−

M
N x2

p,n−2vp,nxp,n+2σ2
0λ|xp,n|

2σ2
0

), for
p = 1, · · · , P, and n = 1, · · · , N . Using some algebra,
Λp can be represented as

Λp = (λ/2)N Ip,1Ip,2 · · · Ip,N , (5)

where Ip,n is given by,

Ip,n =
√

2πσ2
0 exp

(
(vp,n + σ2

0λ)2

2σ2
0C

)
Q

(
(vp,n + σ2

0λ)
√
Cσ0

)

+
√

2πσ2
0 exp

(
(vp,n − σ2

0λ)2

2σ2
0C

)(
1−Q

(
(vp,n − σ2

0λ)
√
Cσ0

))
,(6)

C = M
N , and Q(z) = 1/(

√
2π)

∫ z
−∞ exp(−t2/2)dt. Using

Equations (4), (5) and (6), ΛMMV can be expressed as

ΛMMV (λ) = β(λ)
P∏
p=1

N∏
n=1

Ip,n. (7)

Next, the goal is to find λ̂ that maximizes ΛMMV (λ), i.e.,
λ̂ = arg max

λ
ΛMMV (λ). As we will observe in an example

presented in Section 4, detection performance appears to be
insensitive to the choice of λ. Therefore, we carry out perfor-
mance analysis in Section 4 for a given value of λ.

Algorithm 1 Multi-task BCS based Sparse Signal Detection
(LBCS-MT)
Inputs : Φ, Y = [y1, · · · ,yP ]
Outputs : Decision statistic ΛMT , Detection Decision

Initialize ζj = 0, for j = 1, · · · , N, and λ = 0. Set k = 0.
While k ≤ R

Select a particular ζkj out of ζk = [ζk1 , · · · , ζkN ].

If A < 0 and ζkj = 0, add ζkj to the model.

else if A < 0 and ζkj > 0 then find ζk+1
j using (10).

else if A > 0, the prune ζkj and set ζk+1
j = 0

end if
Update µp = ΣpΦ

Typ,Σp = [ΦTΦ +Z]−1

Update sp,j , qp,j , and gp,j
Update λ as in Equations (9).
k = k + 1

end While
Detection decision:
If ΛMT = 1

RP

∑R
r=1

∑P
p=1 µ

2
p,r ≥ θ,H1 is true, otherwise H0

is true where θ is the threshold.

3.2. Partial Estimate based Detection
In this subsection, we exploit the three-stage hierarchical
prior [17] to partially estimate the signals to construct de-
cision statistics. The pdf of the p-th measurement vec-
tor, yp, under H1 is p(yp|xp, σ2

0) = N (yp|Φxp, σ2
0IM ). The
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prior pdf of xp is p(xp|ζ, σ2
0) =

∏N
j=1 N (xp,j |0, ζjσ2

0). σ2
0

and ζ follows a Gamma distribution as, p((σ2
0)−1|a, b) =

G((σ2
0)−1|a, b), p(ζj |λ) = G(ζj |1, λ/2) = λ

2 exp(−λζj2 ),

where G(α|a, b) = ba

Γ(a)α
a−1 exp(−bα) and Γ(a) is the

Gamma function. The parameter λ follow a Gamma distribu-
tion, i.e., p(λ) = Γ(λ|0, 0). The conditional pdf of xp given
(ζ, λ) is [17]

p(xp|ζ, λ) =
Γ(a+N/2)

[
1 + 1

2b
(xp − µp)TΣ−1

p (xp − µp)
]
)

Γ(a)(2πb)N/2|Σp|N/2
,

where |.| is a determinant operator, µp = ΣpΦ
Typ, Σp =

[ΦTΦ + Z]−1, and Z = diag(1/ζ1, · · · , 1/ζN ). We esti-
mate hyperparameters (ζ, λ) by maximizing the logarithm of
p(ζ, λ,y1, · · · ,yP ). Let L(ζ, λ) , log p(ζ, λ,y1, · · · ,yP ).
From [17], L(ζ, λ) = L(ζ) +L′, where L(ζ) contains all the
terms with ζ from L(ζ, λ) and L′ contains all the remaining
terms. Also,

L(ζ) = L(ζ\j) + l(ζj), (8)
where L(ζ\j) is the total contribution of ζ except ζj in
L(ζ) and l(ζj) is only due to ζj and is given by l(ζj)=
−1
2

∑P
p=1(M + 2a) log

(
1− ζjq

2
p,j/gp,j

1+ζjsp,j

)
+ log(1 + ζjsp,j) +

λζj , where sp,j , ΦT
j C
−1
p,−jΦj , gp,j , yTpC

−1
p,−jyp +

2b, qp,j = ΦT
j C
−1
p,−jyp, Cp = I + ΦpZ

−1ΦT
p ,Z =

diag(1/ζ1, · · · , 1/ζN ), andCp,−j isCp with contribution of
Φj removed. As in [17], the hyperparameters can be updated
as

λ =
N − 1∑
j ζj

, (9)

ζ−1
j ≈

{
−B±

√
B2−4AC
2A

, A < 0
∞, otherwise.

(10)

where A ,
∑P
p=1

sp,j+λ−(M+2a)qp,j/gp,j
(sp,j−q2p,j/gp,j)sp,j

,

B ,
∑P
p=1

λsp,j+(sp,j+λ)(sp,j−q2p,j/gp,j)

(sp,j−q2p,j/gp,j)sp,j
, and C , Pλ.

3.2.1. Detection of a Sparse Signal with Multitask Com-
pressed Sensing with Laplace Priors (LBCS-MT)
In Algorithm 1, we present a method for the detection of
sparse signals using the partial estimate of the signal. This
method is called Multi-task BCS based sparse signal detec-
tion which is denoted as LBCS-MT. This is an adaptation of
an algorithm from [17] for the detection problem. In Step
3 of the algorithm, we need to choose any ζj . Instead, we
first compute ζj using (10) and choose ζj corresponding to
the maximum value of l(ζj) among all j = 1, · · · , N . Up-
dates for Σp,µp, sp,j , qp,j and gp,j are evaluated using the
relevance vector machine formulation as in [18]. The itera-
tions are continued for a finite number of times namely R.
The posterior mean, µp, is the estimate of the unknown sig-
nal, xp, at the p-th sensor and is a vector with R elements,
i.e., µp ∈ RR. The average energy of the estimated signals
over all the sensors is given by 1

RP

∑R
r=1

∑P
p=1 µ

2
p,r which is

used as the detection statistic. The decision is made in favor
ofH1 if it is greater than the threshold (θ).

3.2.2. Decision Statistics Based on the Projection on the Es-
timated Support (BCSL-Prj)
Next, we aim to reduce the computational complexity of
LBCS-MT. Here, we propose a method where we estimate
the supports of all the signals in a single step.

Algorithm 2 Projection based sparse signal detection (BCSL-Prj)

Inputs : Φ, Y = [y1, · · · ,yP ]
Outputs : Decision statistic Λprj , Detection Decision

Solve for ζj such that ∂L(ζ)
∂ζj

= 0,∀j

Evaluate l(ζj), from Equation (8) ∀ζj from Step 2.
Arrange l(ζj) in descending order and choose K′ indices j for the
first K′ largest l(ζj). Let Û be the set containing these indices
Detection decision:
If Λprj =

∑P
p=1 ‖Ωyp‖22 ≥ θ,H1 is true, otherwise H0 is true

where θ is the threshold, where Ω is defined in Equation (11) .

The proposed method is presented in Algorithm 2 which
we refer to as BCSL-Prj. First ζj is estimated, assuming that
all the elements of ζ, but ζj , are fixed, by solving ∂L(ζ)

∂ζj
= 0.

The value of ζj is given by (10). We evaluate the contribution
of each ζj in the log likelihood, i.e., l(ζj) ∀ζj . We use the
heuristics that the index corresponding to the largest increase
in the log likelihood should be in the support set of the sparse
signal. Let

Û = {j | l(ζj) be one of the K’ largest among all l(ζj), ∀j}.

Let ΦÛ be a submatrix of Φ which contains the columns of
matrix Φ indexed by Û . Let Ω be the orthogonal projection
operator defined as

Ω = ΦÛ (ΦT
ÛΦÛ )−1ΦT

Û . (11)

The total energy of the compressed measurements on the sub-
space spanned by the columns of Φ indexed by Û is given by
Λprj =

∑P
p=1 ‖Ωyp‖22 which, if is greater than the threshold,

θ, the decision is made on the presence of the sparse signal. It

(a) log ΛMMV vs λ (b) ROC for different values of λ

Fig. 1: Detection performance of ΛMMV for different values
of λ.

should be noted that LBCS-MT estimates sparse signals if we
allow Algorithm 1 to converge. Instead, we run it for a finite
number of iterations, R, which decreases the time complexity
of the algorithm. On the other hand, BCSL-Prj runs only for
a single iteration and estimates the signal. Hence, BCSL-Prj
is computationally more efficient than LBCS-MT.
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(a) M/N ≈ 0.49, η = 1.76 dB (b) M/N = 0.49, η = 13.98 dB (c) M/N = 0.1, η = 1.76 dB
Fig. 2: Detection Performance of LR-SMV, SOMP1, SOMP5, LR-MMV, BCSL, LBCS-MT, BCSL-Prj, and ML-based methods when N = 512, K = 5 and,
R = 3

4. NUMERICAL RESULTS
To illustrate the performance of the proposed algorithms, we
consider different values of the compression ratios (M/N )
and the total noise power, η = 10 log10(Mσ2

0) dB. We gen-
erate signals of dimension N = 512 with the sparsity index,
K = 5. The sparse support set for all the signals is assumed
to be the same and is selected from [1, N] uniformly. We
generate the elements of the M × N measurement matrix Φ
and amplitudes of signals in the support set from a normal
distribution with mean zero and unit variance.

The number of sensors considered in a centralized net-
work is 4, i.e., P = 4. The single measurement vector (SMV)
cases of LR-MMV and LBCS-MT are denoted as LR-SMV
and BCSL, respectively. We run LR-MMV, LBCS-MT,
BCSL-Prj, LR-SMV, and BCSL for 1000 Monte Carlo runs.

In the first experiment, we study the dependency of
ΛMMV on λ. Figure 1(a) shows ΛMMV as a function of λ.
It shows that the value of ΛMMV when signals are present is
always greater than the case when signals are absent. Because
of this behavior, the detection performance with ΛMMV as
the decision statistic is almost the same for a wide range of λ
as shown in Figure 1(b).

Table 1: Comparison of run times of LR-MMV, LBCS-MT, and BCSL-Prj
in seconds to obtain the sparsity pattern when N=512, K = 5 and R = 3

Run times when N = 512 and K = 5
M/N → 0.60 0.70 0.80 0.90 1.00
LR-MMV 0.70 0.76 0.89 0.96 0.93
LBCS-MT 0.82 1.43 2.01 1.60 1.22
BCSL-Prj 0.17 2.37 2.92 2.24 3.01
SOMP5 17.26 16.25 20.25 20.86 23.19

In the second experiment, we study the detection per-
formance of the proposed methods for different values of η
and M/N . In Figure 2, we show the ROC curves for all
the proposed methods. We use the detection performance
of the maximum likelihood (ML) based detector, which as-
sumes that the support set of the sparse signal is known, as
a benchmark to compare the performance of the proposed
algorithms. We also compare the proposed algorithms with
the SOMP based method proposed in [3]. Figures 2(a) and
2(b) show the simulation results of all the proposed detection
methods when η = 1.76 dB and η = 13.98 dB, respectively

for M/N ≈ 0.49. BCSL-Prj method outperforms the SOMP
based method [3]. SOMP based methods assume a determin-
istic signal model. BCSL-Prj method consistently performs
better than the SOMP1 algorithm and performs similarly
as the SOMP5 algorithm. SOMP1 and SOMP5 represent
the ROC curve of SOMP based detection algorithm when
the decision statistic is constructed after 1 and 5 iterations,
respectively. Figure 2(c) shows the detection performance
when η = 1.76 dB and the number of compressed mea-
surements is small, i.e., M/N ≈ 0.1. The results show
that LR-MMV outperforms all the other algorithms. This
is because reconstruction based algorithms require a larger
number of measurements to get a better estimate of the signal
to provide a reliable detection performance.

Finally, we compare the time complexities of the pro-
posed algorithms. Table 1 gives a summary of the run times
required by LR-MMV, LBCS-MT, BCSL-Prj, SOMP1 and
SOMP5 to make the detection decision for different values
of M with N=512. The experiment is carried out in Matlab
2015b using processor Intel Xenon(R). The values in the ta-
ble show the total times required by the algorithms in seconds
to make the decision for 20 instances. The time needed for
the proposed LR-MMV is the least and is followed by LBCS-
MT and BCSL-Prj, respectively. SOMP5 has the worst time
complexity. Thus, the proposed detection methods have ei-
ther better detection performance or similar performance with
better computational complexity compared to existing work.

5. CONCLUSION

In this paper, we have studied the problem of reliable de-
tection of sparse signals in a distributed network with com-
pressed measurements in a Bayesian framework. We pro-
posed several detection methods namely LR-MMV, LBCS-
MT, and BCSL-Prj. We showed that LR-MMV has better
detection performance compared to the other proposed meth-
ods when the number of measurements is quite small. As the
number of measurements increases, the BCSL-Prj algorithm
performs better than the rest of the algorithms and the state-
of-the-art algorithms. The proposed methods also provide an
improvement in time complexity. In future work, we will de-
rive bounds on the probability of error in signal detection.
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