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ABSTRACT
For a linear sensor array, using line spectra is a common
technique for estimating directions of arrival (DOA) of
single-tone sources. Yet, very few papers consider multi-
tone sources. For the first time, we provide the optimal
Bayesian inference for multi-line spectra, i.e. a superposition
of line spectra, and estimate the DOAs of the multi-tone
sources. For tractable computation via fast Fourier transform,
we apply a grid-based method, in which source’s tones and
sensor’s array measure are both uncorrelated. Exploiting this
method, we interpret the superposition of sensor’s data as a
complex Gaussian mixture of multi-tone signals. We then es-
timate DOA via conjugate Von-Mises, also known as circular
Gaussian distribution. Our simulation shows that the multi-
tone method is superior to traditional single-tone method for
detecting multi-tone source’s frequencies, particularly for the
sources with overlapping frequencies. The posterior DOA’s
resolution can be tuned via Von-Mises’ parameter a priori,
which enhances the sparsity of DOA’s estimation.

Index Terms— DOA, Von-Mises distribution, multi-tone
sources, sensor array, LASSO

I. INTRODUCTION
For a linear sensor array, it is well-known that a far distant

source with different directions of arrival (DOA) oscillates
the steering array’s measure with different angular frequen-
cies [1], for which the line spectrum is a popular estimation
method [2], [3]. The superposition of the array’s spatial
frequencies, however, becomes challenging for estimation,
particularly when the number of sources is unknown.

For a small number of sources, the array’s line spectra
are sparse and can be estimated effectively via sparsity-
motivated `1-normed techniques like atomic norm [1], [2]
and LASSO [4], [5]. The near optimal bound for the
atomic norm approach was also given in [6]. When the
number of sources is high, the array’s superposition was then
modeled as a mixture of all potential mono-tone sources,
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whose appearance is given by a boolean indication vector.
The problem is then to estimate DOA in tandem with the
indication vector.

Given noisy data, Bayesian inference is an optimal method
for estimating model’s parameters in terms of least averaged
minimum-risk, of which the Mean Square Error (MSE) is
a special case [7], [8]. However, the Bayesian indicator’s
inference is intractable, since the number of indication vec-
tor’s possible values grows exponentially with the number of
sources. Thus the iterative Variational Bayes approximation
[9], which is popular in mixture context, was proposed for
the line spectra problem [3], [10]. In the sparse context, these
Bayesian indicator techniques are shown equivalent to the
`1-normed LASSO techniques, if the prior is a Laplacian
distribution [4], [10], [11].

From the works on DOA, we recognize that very few
papers consider the case of multi-tone sources, even though
such multi-tone sources appear frequently in practice. All
narrow band and frequency-overlapping sources are ex-
amples of this case. In this paper, we extend the above
indication vector to an indication matrix, which, in con-
trast to the above works, allows us to detect a source
with more than one frequency component at each DOA.
For fast computation without losing the optimality of the
Bayesian method, we will exploit the uncorrelated property
of frequency components via the fast Fourier transform
(FFT) method. This special property allows the factorization
of DOA’s posterior distributions and, hence, yields linear
computational complexity. To our knowledge, this is the
first time that the exact posterior distribution can be derived
for DOA of multi-tone sources. Instead of Laplace, we also
enhance the sparsity via the Von-Mises prior distributions,
which is conjugate to directional angle of additive white
Gaussian noisy observation. Hence, our novel approach with
indication matrix can be regarded as a generalization of
LASSO method for the DOA problem.

II. ARRAY DATA MODEL
At time t ∈ {1, 2, . . . , N}, let xt , [x1,t, . . . , xD,t]

T ∈
CD and st , [s1,t, . . . , sM,t]

T ∈ CM be a complex-valued
snapshot of D sensors and M known tones respectively,
with sm,t , ςme

jγmi, i ∈ {1, 2, . . . , D}, where ςm ∈ C
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x1︷ ︸︸ ︷
x1,1 · · ·

xN︷ ︸︸ ︷
x1,N

...
...

xD,1 · · · xD,N


︸ ︷︷ ︸

XD×N

=


a1(ω1)︷ ︸︸ ︷
ejω1 · · ·

aK(ωK)︷ ︸︸ ︷
ejωK

...
...

ejω1D · · · ejωKD


︸ ︷︷ ︸

AD×K


l1︷ ︸︸ ︷
l1,1 · · ·

lM︷ ︸︸ ︷
l1,M

...
...

lK,1 · · · lK,M


︸ ︷︷ ︸

LK×M


s1︷ ︸︸ ︷
s1,1 · · ·

sN︷ ︸︸ ︷
s1,N

...
...

sM,1 · · · sM,N


︸ ︷︷ ︸

SM×N

+ZD×N , (1)

is complex amplitude and γm ∈ [0, π) is temporal angular
frequency, m ∈ {1, 2, . . . ,M}. Without loss of generality,
we assume ςm = 1, ∀m. In order to apply the fast
Fourier transform (FFT), we assume all frequency tones
fall into discrete Fourier transform (DFT) bins 2π

N , i.e.
γm ∈

{
0, 2πN . . . , (N − 1) 2πN

}
.

Let X , [x1,x2, . . . ,xN ] ∈ CD×N and S ,
[s1, s2, . . . , sN ] ∈ CM×N denote the matrix of sensor’s
output and frequency components over N time points,
respectively. Let us also call A , [a1,a2, . . . ,aK ] ∈
CD×K a steering array matrix, whose {i, k}-element is
ai,k , ej2%iωk = ejωki, i ∈ {1, 2, . . . , D}, with radius
%i , λ

2 i ∈ R denoting positions of D sensors spaced at half
the unit wavelength λ = 1 and spatial angular frequencies
ωk , π cosφk ∈ [0, 2π) corresponding to upper half-space
arrival angle φk ∈ [0, π), k ∈ {1, 2, . . . ,K}.

Let us now define a boolean incidence matrix L =
[l1, l2, . . . , lM ] ∈ IK×M , whose {k,m}-element lk,m ∈
I , {0, 1} links the mth frequency component to the arrival
angle of the kth source. Our data model for the linear sensor
array is then written in matrix form in (1), in which Z is
a D ×N matrix of complex additive white Gaussian noise
(AWGN) with power σ2. Element-wise, we can rewrite our
model (1) as follows:

xi,t =

K∑
k=1

M∑
m=1

lk,me
jωkism,t + zi,t, (2)

which is a linear mixture of multi-tone sources. The DOA
problem is now equivalent to an estimation problem of spa-
tial frequencies ω , [ω1, ω2, . . . , ωK ]T and their associated
incidence matrix L. In the literature, the incidence matrix L
in (1) was reduced to a diagonal matrix of boolean values [3],
[10], which corresponds to the case of single-tone sources.

III. BAYESIAN MODEL
From matrix (1) and element form (2), the observation

model is a complex Gaussian distribution f(X|ω,L) =∏N
t=1

∏D
i=1 CN xi,t

(
∑K
k=1

∑M
m=1 lk,mai,ksm,t, σ

2) =∏N
t=1 CNxt

(ALst, σ
2ID), in which ID is a D×D identity

matrix, as follows:

f(X|ω,L) = 1

(πσ2)
ND

exp

(
−
∑N
t=1 |xt −ALst|

2

σ2

)
.

(3)

(a) 1w Kw2w

1l Ml2l

(b)

Kl2l1l

2w Kw1w

Fig. 1. Directed acyclic graph (DAG) for posterior distribu-
tion of indicators and DOAs in case of (a) multi-tone sources
and (b) single-tone sources. All the tones are assumed
uncorrelated.

Let X̂ , (SX∗)T =
∑N
t=1(stx

∗
t )
T be the DFT of the

array data and Σ̂ , SS∗ =
∑N
t=1[sts

∗
t ]
T be the covariance

matrix of tone components. For FFT, we assume that all
source’s tones are set at DFT bins and, hence, Σ̂ is a diagonal
matrix, i.e. Σ̂ = NIM . Then, in (3), we have:

N∑
t=1

|xt −ALst|2 =

N∑
t=1

(|xt|2 − 2Re{x∗tALst}+ |ALst|
2
),

N∑
t=1

x∗tALst = 1TDX̂ ◦ (AL)1M =

K∑
k=1

M∑
m=1

x̂Tmaklk,m,

N∑
t=1

|ALst|2 =1TM Σ̂ ◦
(
LTA∗AL

)
1M = ND

K∑
k=1

M∑
m=1

lk,m,

(4)

in which ∗ , T , ◦, x̂m and 1M denote conjugate transpose,
matrix transpose, Hadamard product, mth column of X̂ and
unit column vector of length M with all elements 1, respec-
tively. Note that, in (4), we have A∗A = DIK for the case
of uncorrelated sensor’s steering matrix. Our assumption on
uncorrelated tones and steering matrix is not restrictive in
practice, since we can always sample more data and increase
the number of sensors in order to increase the resolution of
DFT bins in FFT, respectively. For single-tone sources, the
matrix L is diagonal and, hence, the observations (3-4) and
posteriors (5) are completely factorized, as shown in Fig. 1.

III-A. Non-informative prior
Let us firstly assume non-informative, i.e. uniform, priors

f(ω,L) = f(L)f(ω), in which the links L follow Bernoulli
distributions with equal probabilities and all angular fre-
quencies ωk are uniform a priori over [0, 2π). By Bayes’
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rule, substituting the uncorrelated forms (4) to (3), we can
factorize the joint posterior f(ω,L|X) ∝ f(X|ω,L), as
follows:

f(ω,L|X) ∝
K∏
k=1

M∏
m=1

(
D∏
i=1

N∏
t=1

CN xi,t
(lk,mai,ksm,t, σ

2)

)

=

K∏
k=1

M∏
m=1

f(ωk, lk,m|X), (5)

which resembles the element-wise form in (2). Also, from
(3-4) and (5), we can derive the following equivalent forms:

f(ωk, lk,m|X) ∝ 1

πσ2
exp

(
−||X − lk,mak(ωk)sm,:||

2

σ2

)
=

1

%k,m
exp

(
2Re{x̂Tmak(ωk)} −ND

σ2
lk,m

)

=
ξk
%k,m

∏D
i=1 VMωki (κk,mlk,m)

exp
(
ND
σ2 lk,m

) , (6)

where the || · ||2 operator is the squared `2-norm, sm,: is
the mth row vector of S, %k,m is a normalizing constant,
ξk =

∏M
m=1 2πI0(|κm,k|), Iq(·) is the modified Bessel

function of the first kind with order q, the parameter of the
Von-Mises distribution is κk,m , 2

σ2 x̂
∗
k,m [12] and x̂i,m is

the {i,m}th-element of the FFT matrix X̂ . Then, from (5-6),
we can derive feasibly the marginal posteriors f(ωk|X) =∑

lk,:
f(ωk, lk,:|X) =

∏M
m=1

∑
lk,m

f(ωk, lk,m|X) and

f(lk,m|X) =
∫ 2π

0
f(ωk, lk,m|X)dωk, where lk,: ,

[lk,1, . . . , lk,M ], as follows:

f(ωk|X) =
1

%k,m

M∏
m=1

(1 + %k,mf(ωk, lk,m = 1|X)) ,

f(lk,m|X) = Ber(pk,m), pk,m ,
χk,m

χk,m + 1
, (7)

where χk,m =
∫ 2π

0
1
2π%k,mf(ωk, lk,m = 1|X)dωk. Since

the i-fold wrapped Von-Mises distribution in (6) is not
given in closed-form, it can be evaluated via a grid-based
quantization method [13]. For closed-form solution, we can
approximate (6) by a mixture of Von-Mises distributions at
periodic locations. Since wrapped Von-Mises distribution is
periodic over circle [0, 2π), this approximation yields high
accuracy, as shown in [3].

In observation model (2-3), array dataX are superposition
of KM components, each of which is indicated by lk,m
and a bi-linear product of the steering array ak(ωk) and the
mth signal’s tone sm,:. Then, the posterior probability (6) of
DOA’s ωk and each component’s indicator lk,m is inversely
proportional to the Euclidean distance between X and each
of the components ak(ωk)sm,:. This appearance probability
is highest when ωk and sm,: are closest to the true value of
DOA and signal’s tones, respectively.

Nevertheless, the non-informative prior on ωk yields
ambiguous and possibly overlapping DOA’s values in (6).

DOA

sensor array

Fig. 2. Von-Mises prior distributions, also known as circular
Normal distribution, for DOA’s angular frequency ω. Mean
prior values of ω are spanned equally over [0, 2π). Each Von-
Mises is mostly contained within three standard deviation
3σω .

The reason is that our observation model (2-3) imposes
no difference between ω1, . . . , ωK . In order to avoid this
ambiguity, each ωk should have distinct properties, which
can be imposed via conjugate priors, as shown below. Note
that, in the case of a single-tone, we can simply set L as a
diagonal matrix in above formulae. Hence, the single-tone
method does not suffer from this ambiguity of DOA, since
each DOA is associated with only one distinct tone at all
time.

III-B. Conjugate prior
Let us now consider an informative prior f(ω,L) =

f(ω)f(L), in which the links L are uniform a priori
like above. For angular frequency ωk ∈ [0, 2π), we set
f(ω) =

∏K
k=1 VMωk

(βk), which is conjugate to Von-Mises
distributions in (6) [3], [14]. The concentrating parameters
β , [β1, β2, . . . , βK ]T ∈ CK can be tuned such that, for
each ωk, the mean E(ωk) = ∠βk = 2π

K k and variance
σ2
ω , var(ωk) = 1− I1(|βk|)

I0(|βk|) ≈
1
|βk| , k ∈ {1, 2, . . . ,K}, are

spanned equally over [0, 2π) a priori, as illustrated in (2).
With this conjugate prior, there is an a priori knowledge βk
in posterior of each ωk, i.e.:

f(ωk|X, βk) ∝ f(ωk|X)VMωk
(βk).

The angle’s estimation φ̂k = arccos E(ωk)
π can be estimated

via posterior mean of ωk, which differs from non-informative
case (7) by a concentrating variance σ2

ω ≈ 1
|βk| around

offset means ∠βk, k ∈ {1, 2, . . . ,K}. In this paper, we set

σω = 1
3K

√
σ2

N , which is enough to separate K Von-Mises
distributions equally over K parts of a circle, as illustrated
in Fig. 2. The ratio σ2

N is the inverse of signal-to-noise ratio
(SNR), where N is the sum of tone’s power unit over N
snapshots, as shown in (4). Hence, the higher the SNR, the
smaller is the standard deviation σω and the Von-Mises prior
is closer to Gaussian distribution around the signal’s value.
Reversely, the lower the SNR, the higher is σω and Von-
Mises prior is closer to uniform distribution [12]. In the

4256



literature, this ratio σ2

N also resembles the near optimal bound
via sparse atomic norm optimization [2], [6]. In practice, the
number K should be set as high as possible, so that there is
at least one ωk close enough to the true DOA’s value.

The probability for indicators in (7) now becomes χk,m =∫ 2π

0
VMωk

(βk)%k,mf(ωk, lk,m = 1|X)dωk, in which the
uniform distribution 1

2π in (7) is now replaced by a more
locally concentrated density VMωk

(βk). Generally, we can
also replace this Von-Mises prior by other locally concen-
trated priors, e.g. truncated uniform or Laplacian density in
LASSO [4], [10].

For estimating the number of sources, let us define DOA’s
boolean vector b(L) , [b1, b2, . . . , bK ]T ∈ IK , with bk ,
bk(lk,:) = δ[

∑M
m=1 lk,m 6= 0] and δ[·] denoting Kronecker

delta function. Using this technique, the DOA’s ωk is active
only if the number of active tones at the kth DOA is not null,
i.e. bk 6= 0, with Bernoulli probability f(bk) = Ber(qk) and
qk = 1−f(bk = 0) = 1−

∏M
m=1 pk,m. Since the total num-

ber B of active sources is a summation of Bernoulli variables
B ,

∑K
k=1 bk, it follows a Poisson binomial distribution, i.e.

E[B] =
∑K
k=1 qk and var[B] =

∑K
k=1 qk(1 − qk). Hence,

this case is called sparse if we have B � K.

IV. SIMULATIONS

For simulation, we will consider the case of three sources,
of which the frequency components are: γ0 and 2γ0 for the
first source at angle φ1 = π

8 (rad); 3γ0 for the second source
at angle φ2 = π

4 (rad); γ0 and 3γ0 for the third source at
angle φ3 = π

3 (rad). By this way, the first and second source
each has one overlapping frequency with the third source,
while being not overlapped with each other. The frequency
base γ0 , π

4 (rad) is set at N8 DFT bins. Each DFT bin is a
quantization bin with the width 2π

N (rad/sample). Here we set
N = 210 time samples. We assume the maximum number
of sources and their tones are K = M = 8. The potential
tone values are m

2 γ0 , m = 1, . . . , 8, corresponding to x-axis
in Fig. 3. The number of sensors is D = 20. The varying
signal-to-noise ratio is SNR = 1

σ2 , where σ2 is noise power.
Since the uniform prior would cause DOA’s ambiguity, we
will apply the conjugate prior method in our simulations.

The superiority of multi-tone to single-tone method is
illustrated in Fig. 3 and 4. Fig. 3 shows the posterior
probabilities in (5) and mean estimations E(ωk) of DOA’s
angular frequency ω

2π ∈ [0, 1). The single-tone method,
though being fairly accurate, can only capture one DOA for
each tone. In contrast, the multi-tone method successfully
detects all the sources, even with overlapping tones.

From this posterior distribution, Fig. 4 shows the MSE
value 1

NDE||ÂLS−ALS||2 of estimated means versus the
level of noise, measured in SNR, in the sensor’s data. At low
SNR, the noise dominates the signal and, hence, both meth-
ods have the same low performance. When SNR increases,
the multi-tone method is able to retrieve more tones of the
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Fig. 4. Mean square error for sensor array data with 104

Monte Carlo runs.

sources and, hence, is significantly more accurate than the
single-tone method.

V. CONCLUSION
In this paper, a full Bayesian multi-line spectra method

was proposed for estimating the DOAs of multi-tone sources.
In contrast to traditional single-line sprectra method, whose
assumption is based on single-tone source, the multi-tone
approach can detect all DOAs and the source’s frequencies,
even with overlapping frequencies. Owing to exact Bayesian
inference, these estimations are optimal in term of Mean
Square Error, as illustrated in our simulations. Also, this
Bayesian method yields the optimal estimation for the num-
ber of active sources in the area, which is often unknown in
practice. The computational complexity is only sub-linear,
owing to applicability of fast Fourier transform.
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