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ABSTRACT

One of the challenging classification problems consists of
learning relevant and meaningful relationships between high
dimensional representations across a relatively few observed
individuals. Since this problem could have drastic effects
on the classification performance, we propose a Bayesian
alternative in the case of logistic regression. The proposed
method has the additional benefit to learn both the adaptive
embedding, as a Gaussian process, and the dimensionality
reduction, jointly within the same Bayesian framework. We
illustrate the efficiency and the accuracy of our framework
for classifying images of manufacturing defects.

Index Terms— Machine Learning, Gaussian Process,
Manifold Embedding, Regression, Image Classification.

1. INTRODUCTION

There is currently a significant interest in statistical modeling
and machine learning techniques with the challenge of pro-
cessing massive amounts of complex data (in the form of text
documents, images, audio, video, etc.). In particular, those
methods become interesting in many applications such as im-
age classification, object recognition or detection [1]. While
significant recent progress has been made in the field of image
classification, the problem of high dimensional data remains
particularly challenging [2]. This occurs when the number
of covariates is relatively large or when the components are
highly correlated [3]. The number of equations is conse-
quently less than the number of unknown parameters, which
could lead to an infinite number of solutions.

To avoid the effects of high dimensional data on the
classification performance, intensive research has been con-
ducted [4,6], for which the goal is to build effective predictive
models despite the aforementioned problems. In general, the
previous methods in this context can be divided into two
main categories. The first category known as shrinkage or
regularization methods. This technique is typically based
on constraining or regularizing the coefficient estimates, or
equivalently, on shrinking the coefficient estimates towards
zero. The shrinking of the coefficient estimates has a signifi-
cant impact of reducing their variance [5].

The ridge regression and the Lasso are widely employed
methods in this context. Ridge regression [7] is an example of
shrinkage method applied to maximum log-likelihood (MLE)
(or equivalently ordinary least squares (OLS)) estimator. The
Lasso [8, 9] is another well known shrinkage method which
replaces the l2 norm on ridge by l1 made use of Bayesian
networks. In particular, some approaches are based on the
approximation of non-Gaussian joint posterior with a Gaus-
sian one. For instance, [10, 11] uses a Laplace approximation
whereas [11,12] uses an expectation propagation (EP) assum-
ing a density filtering and an extended version of the Kalman
filter. Similarly, [13] employs an adaptive cavity approxima-
tion to capture significant correlations.

In the same context, to handle the problem of high di-
mensional data, we propose a new method, called manifold
Gaussian processes (MGP) classifier, which jointly combines
learning the data mapping into a feature space and a Gaussian
processes classifier [14] on the embedding manifold (Hilbert
space). This formulation has the benefit to make it more easy
to deal with nonlinearity of data and to create separability
in the embedding space [15]. For the prediction part, the
Bayesian inference has proved its efficiency for optimizing
the model parameters.

The rest of the paper is organized as follows. We first in-
troduce the background and the MLE-ridge weighted regres-
sion for estimating parameters in Section 2. We give details
of the proposed framework: MGP classifier in Section 3 and
manifold Gaussian processes (MEP) in Section 4. The exper-
imental results are presented and discussed in Section 5. We
finally conclude in Section 6.

2. NOTATIONS AND BACKGROUND

This preliminary section introduces notations that will be used
throughout the paper and provides a brief set of basic princi-
ples and background. Though mildly technical, it is useful
as we focus on a particular sub-set of results that pertain di-
rectly in building our model. In this work, we suppose that
we observe N independent individuals (X1, Y1),..,(XN , YN )
distributed with the same law as (X,Y ) and we consider the
problem of learning a probabilistic regression model from
available observations, to better explain the relationship be-
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tween the response variable Y and X . We are particularly
interested on studying the case of binary classification, where
only two classes are discriminated, i.e Y ∈ {0, 1}. We remind
that logistic regressions have been widely used as πβ(x) =
P(Y = 1|X = x) = σ(xTβ) where σ usually refers to the
sigmoid function. We denote by πβ(xi) the probability of
Yi = 1 for a given Xi = xi for all i ∈ {1, .., N}. Basi-
cally inspired from ridge logistic [16], the idea of weighted
ridge logistic consists of considering the weighted sum be-
tween the log-likelihood of logistic regression model: l(β) =∑N
i=1 yixi

Tβ − log(1 + exp(xi
Tβ)) and the square sum of

β, which gives

lλ(β) =
(1− λ)

2
l(β)− λ

2
||β||22 (1)

where the regularization parameter satisfies 0 < λ < 1.
We denote by βλ,∗ the optimal solution. Therefore for a
better choice of λ, the estimator βλ,∗ should maximize the
log-likelihood compared to the unstructured MLE: β0,∗, ie.
MSE(βλ,∗) < MSE(β0,∗) [17]. The gradient vector of lλ(β)
is

∇lλ(β) =
(1− λ)

2
∇l(β)− λβ (2)

where ∇l(β) = XT (Y − πβ(X)), X = (x1, . . . , xN ), and
Y = (y1, . . . , yN ). Then the estimator is a solution of
∇lλ(β) = 0 and the negative Hessian of lλ(β) is given by

Hλ(β) =
(1− λ)

2
XTH(β)X + λI (3)

where H(β) is an N × N diagonal matrix with Hii(β) =
πβ(xi)(1 − πβ(xi)). We develop a Taylor expansion of
∇lλ(βk+1) at βk and use iterative Newton or gradient de-
scent approaches iteratively until convergence, which gives

βk+1 ≈ (1− λ)

2
(Hλ(βk))−1(XTH(βk)Xβk +∇l(βk))

(4)
For the rest of this paper, we assume that Y ∈ {−1, 1}.

3. MANIFOLD GAUSSIAN PROCESS: A BAYESIAN
INFERENCE WITH LAPLACE APPROXIMATION

The manifold embedding consists of searching for an optimal
mapping from the data space to a new manifold under some
constraints (e.g. reduce non-linearity, increase separabil-
ity.) [18]. If we denote this mapping Ψ and (H, < ., . >H) the
new feature space, the learning will be made on (Ψ(X), Y )
where it is desired that the data will be more linearly sepa-
rable. Furthermore, we assume that H is finite dimensional
and that a basis of H could be determined in unsupervised
manner. In the remainder of this paper, we consider that
H = span{φ1, .., φm} based on the spectral theorem [19].

At this stage, we give details of the manifold Gaussian
processes (MGP) classifier, where the mapping Ψ and the
Gaussian processes (GP) classifier are learned jointly from
data. We use Laplace based method to approximate the
Bayesian inference. To achieve this goal, we introduce a new
latent variable f and we consider a new formulation of the
logistic πf (x) = σ(f(x)). The GP classification is based
on placing a GP prior over the latent variable f ∼ GP(0, c)
where c is a covariance function [20]. By abuse of notation,
we note f = (f1, .., fN )T = (f(x1), .., f(xN ))T . We remind
that the Laplace approximation employs a Gaussian approx-
imation P̂(f |X,Y) to the true posterior P(f |X,Y) from the
second order Taylor expansion to logP(f |X,Y) around the
MAP estimator: f̂ = arg maxf logP(f |X,Y).

We first present the MGP classifier model and then we
make connection to the standard GP classifier. Note that by
doing so, this framework guides the learning of Ψ toward rep-
resentations that are useful for the overall function f = G◦Ψ.
This later is the key insight where the mapping Ψ and the
Gaussian processes classifier G are learned jointly following
the same supervised objective. Let assume that Ψ is a deter-
ministic, parametrized function that maps the input space Rp
into H, which serves as the domain for the GP classification
G : H → R. Therefore if the input vector x ∈ Rp, the MGP is
equivalent to a GP for f : Rp → R with a covariance function
C such that C(x, x′) = c(Ψ(x),Ψ(x′)) [20].

We recover Z = (z1, .., zN )T = (Ψ(x1), ..,Ψ(xN ))T and
M = (G(z1), .., G(zN ))T . For the learning part, we approx-
imate the MAP donated M̂ by maximizing the posterior den-
sity P(M|Z,Y), i.e. M̂ = arg maxM P(M|Z,Y). By Bayes
rule, its logarithm is proportional to

g(M) = logP(Y|M)− 1

2
MT C̄−1M (5)

where C̄ is the covariance matrix with C̄ij = C(xi, xj). Note
that g(.) is concave leading to a unique optimum. From this
proportionality we obtain a Gaussian approximation

P̂(M|Z,Y) = N (M|M̂, H−1) (6)

∝ exp(−1

2
(M− M̂)TH(M− M̂))

where H = −∇2 logP(M|Z,Y)|M=M̂ = W̄ + C̄−1 and W̄

is a N ×N diagonal matrix with W̄ii = −∂
2 log P(yi|Mi)

∂2Mi

= exp(Mi)
(1+exp(Mi))2

. We use the Newton-based method iteratively
to find the MAP estimator

Mk+1 = (C̄−1 + W̄ )−1(W̄Mk +∇P(Y|Mk)) (7)

The predictive distribution for the MGP of a test input M∗ =
G(Ψ(x∗)) = G(z∗) is

P̂(M∗|Z,Y, z∗) =N (µ(z∗), σ2(z∗)) (8)

µ(z∗) =C̄T∗ C̄
−1M̂ (9)

σ2(z∗) =C̄∗∗ − C̄T∗ (C̄ + W̄−1)−1C̄∗ (10)
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where C̄∗∗ = C(x∗, x∗) and C̄∗ = (C(x1, x
∗), .., C(xN , x

∗))T .
Given the mean µ(z∗) and the variance σ2(z∗) of M∗, we
approximate the predictor for y∗ = 1 as

π̄∗ ≈ EP̂(π∗|Z,Y, z∗) =

∫
R
σ(M∗)P̂(M∗|Z,Y, z∗)dM∗ (11)

4. MANIFOLD GAUSSIAN PROCESS: A BAYESIAN
INFERENCE WITH EXPECTATION PROPAGATION

The EP approach is usually used to approximate marginal mo-
ments and can be generalized for Gaussian processes [21].
The key idea is to replace the likelihood terms by unnormal-
ized Gaussians, we refer to [11] for more details. We call this
method manifold expectation propagation (MEP) model and
we remind that the formulation is similar to MGP classifier,
derived in Section 3, except that the Laplace approximation
is replaced by the expectation propagation. We then use the
same notations and write the posterior distribution over M as
the product of the prior and the likelihood function

P(M|Z,Y) =
1

L
P(M|Z)×

N∏
i=1

P(yi|Mi) (12)

where the normalization term is

L = P(Y|Z) =

∫
RN

P(M|Z)×
N∏
i=1

P(yi|Mi)dM (13)

In the following, we consider that P(yi|Mi) = Φ(yi ×
Mi), where Φ(.) denotes the probit likelihood for binary
classification. It is clear that the posterior is analytically in-
tractable. To build the MEP framework, we can approximate
the likelihood, locally, with an un-normalized Gaussian

P(yi|Mi) ≈ ti(Mi|L̃i, µ̃i, σ̃2
i ) (14)

= L̃i ×N (Mi|µ̃i, σ̃2
i )

However, the likelihood approximation should not be nor-
malized since the exact likelihood do not have this property.
The product of the local likelihoods is

∏N
i=1 L̃i×N (M|µ̃, Σ̃)

where µ̃ = (µ̃1, .., µ̃N )T and Σ̃ = diag(σ̃2
1 , .., σ̃

2
N ). Based on

local approximations, the posterior can be approximated by

P̂(M|Z,Y) =
P(M|Z)

L
×

N∏
i=1

ti(Mi|L̃i, µ̃i, σ̃2
i ) (15)

= N (M|µ,Σ)

with µ = ΣΣ̃−1µ̃, Σ = (C̄−1 + Σ̃−1)−1.
To summarize, the iterative steps of our algorithm are:

1. Choose one ti(Mi|L̃i, µ̃i, σ̃2
i ) to update

2. Compute the cavity distribution of Mi

P̂−i(Mi) ∝
P̂(Mi|Z,Y)

ti(Mi|L̃i, µ̃i, σ̃2
i )

= N (Mi|µ−i, σ2
−i) (16)

where P̂(Mi|Z,Y) = N (Mi|µi, σ2
i = Σii), σ2

−i =

(σ−2
i − σ̃

−2
i )−1, and µ−i = σ2

−i(σ
−2
i µi − σ̃−2

i µ̃i)

3. Define Pi(Mi), the pseudo-exact posterior marginal
distribution of Mi, as

Pi(Mi) = P(yi|Mi)× P̂−i(Mi) (17)

4. Compute P̂(Mi) = L̂i ×N (Mi|µ̂i, σ̂2
i ) by minimizing

the Kullback-Leibler divergence (K.L),

(L̂i, µ̂i, σ̂
2
i ) = argmin

(Ẑi,µ̂i,σ̂2
i )

K.L(Pi(Mi)||P̂(Mi)) (18)

then the desired posterior marginal moments are

L̂i = Φ(li), σ̂2
i = σ2

−i −
σ4
−i×N (li|0,1)

(1+σ2
−i)×Φ(li)

(li + N (li|0,1)
Φ(li)

)

µ̂i = µ−i +
yi×σ2

−i×N (li|0,1)

Φ(li)×
√

1+σ2
−i

, li = yi×µ−i√
1+σ2

−i

(19)

5. Update (L̃i, µ̃i, σ̃
2
i ) with ti(Mi|L̃i, µ̃i, σ̃2

i ) = P̂(Mi)

P̂−i(Mi)
,

µ̃i = σ̃2
i (σ̂−2

i µ̂i − σ−2
−i µ−i), σ̃2

i = (σ̂−2
i − σ

−2
−i )−1,

L̃i = L̂i

√
2π(σ2

−i + σ̃2
i ) exp( 1

2
(µ−i−µ̃i)

2

σ2
−i+σ̃

2
i

)

(20)

As in the previous section, the prediction by MEP are

µ(z∗) =C̄T∗ C̄
−1µ = C̄T∗ (C̄ + Σ̃)−1µ̃ (21)

σ2(z∗) =C̄∗∗ − C̄T∗ (C̄ + Σ̃)−1C̄∗ (22)

Therefore, the approximate predictor for y∗ = 1 is

π̄∗ = Φ(
C̄T∗ (C̄ + Σ̃)−1µ̃√

1 + C̄∗∗ − C̄T∗ (C̄ + Σ̃)−1C̄∗

) (23)

5. EXPERIMENTAL RESULTS

We evaluate the performance and the efficiency of the pro-
posed methods on a database of 2042 images of manufactur-
ing defects. The database contains 530 images of defective
metallic boxes and 1512 images of non-defective ones. Fig-
ure 1 shows two examples of original images and several ex-
tracted features (vertical gradient, binary gradient, and Gabor
filter) used to represent them for evaluation. First, we test
the efficiency of our framework to classify defective and non-
defective images. We learn the model parameters from 75%
of the dataset as training and use the rest for test. To evalu-
ate the classification quality, we consider the False Negatives
(FN: non-defective but classified as defective ) and False Pos-
itives (FP: defective but classified as non-defective). The sub-
division has been performed randomly at least 15 times and
the recognition rates are given as a mean. We compare our
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Fig. 1. Non-defective (top) and defective (bottom) boxes with
different representations.

approach with two iterative methods: gradient and Newton as
detailed in Section 2 using the same experimental protocol.

To compute the classification error, we first compute the
estimator and its parameters from the training (X,Y) then,
given a new observation x∗ for test, we apply the regression
model to determine its class y∗. We also use the ROC curve
which generalizes the choice of the threshold by controlling
the sensitivity and the specificity.

The error rates of logistic regression are summarized in
Table 1. Accordingly, one can observe that vertical gradient
achieves the lowest error with a significant margin.

Table 1. Classification performance using Newton-MLE.
`````````Error rates

features gradient Gabor binarization

FP 20% 51% 53%
FN 27% 47% 43%

Results for method described in section 2. Figure 2 shows
the False Positives, the False Negatives and the classification
errors (CE) for different values of λ ∈]0, 1[. Note that the
Newton-based optimization outperforms the gradient descent,
see Figure 2 (left and middle). This result is confirmed by
the ROC curve of Newton-MLE weighted ridge in Figure 2
(right).
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1

Fig. 2. Errors as a function of regularization parameters
(FN=upper values, FP=lower values and CE=values in the
middle) obtained by: Newton method (left) and gradient
(middle). The ROC curve of Newton is given on the right.

Illustration of predictions using MGP and MEP. Fig-
ure 3 shows an example of the key steps to classify a new
input z∗. For this particular example, we display details
for MGP: the sigmoid function σ(z) (red line), the pos-
terior predictive law N (z, µ(z∗) = −0.4, σ2(z∗) = 0.8)
(green line), the product of sigmoid and predictive law
σ(z)×N (z, µ(z∗), σ2(z∗)) (blue line), and the area between

the x-axis and the blue line π̄∗ = 0.41. We then use the same
example for MEP: the probit function σ(z) (red line), the pos-
terior predictive law N (z, µ(z∗) = −0.56, σ2(z∗) = 0.68)
(green line), the product of probit and the predictive law
σ(z)×N (z, µ(z∗), σ2(z∗)) (blue line), and the area between
the x-axis and the blue line π̄∗ = 0.33. We remark that, in
this example with a test input (y∗ = 0), MEP has a better
predictor with π̄∗ = 0.33 than MGP with π̄∗ = 0.41.
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Fig. 3. An illustration of key steps to classify a test input
(y∗ = 0) using MGP (left) and MEP (right).

Results using MGP and MEP. Table 2 summarizes results
of the proposed methods. We can observe that both MGP and
MEP improve the specificity and sensibility with better results
for MEP. The ROC curves of Figure 4 confirm that MEP has
the most predictive power and generalization capability where
the risk of FP is approximately 8.5% and the risk of FN is
10%.

Table 2. Classification performance using MGP and MEP.
hhhhhhhhhhhError rates

methods MGP MEP

FP 11% 8.5%
FN 19% 10%

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Fig. 4. ROC curves for MGP (left) and MEP (right).

6. CONCLUSION

In this paper, we have formulated the classification problem
as a regression and have proposed an efficient solution when
the feature vectors are high dimensional whereas the num-
ber of samples is relatively small. The proposed framework
provides details of two Manifold-based inferences to build su-
pervised Gaussian process classifiers. Experiments have been
conducted to classify images of manufacturing defects and
have shown that proposed methods achieve high accuracy.
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