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ABSTRACT

The combination of multiple clustering solutions used to ob-
tain accurate and novel output has attracted attention in data
clustering research. Despite the success of clustering ensem-
bles, there are still several fundamental limiting issues includ-
ing the lack of a unified formalized problem formulation and
an intuitive interpretation of the resulting solution. We formu-
late the clustering ensemble problem as a binary matrix fac-
torization imposing assumptions of a binary structure on the
resulting matrices. In such a framework, every data object is
assigned to its representative ensemble centroid allowing for
interpretation and validation of the consensus clustering re-
sults. We demonstrate that the formulated problem can be ef-
ficiently solved by means of iterative rank-one binary matrix
approximation and apply the Proximus algorithm proposing
an effective initialization scheme. The evaluation of the pro-
posed clustering ensemble method demonstrates its efficacy
on synthetic and real problems.

Index Terms— clustering ensembles, consensus cluster-
ing, binary matrix factorization

1. INTRODUCTION

Data clustering is considered to be an important problem
in many fields of data analysis and exploration. Due to its
fully unsupervised nature and often unknown details about
the underlying structure of data distributions, clustering can
be extremely challenging. Clustering ensemble methods
(also known as consensus clustering) have emerged as a tool
to achieve more stable, quality and accurate clustering re-
sults [1]. They often allow obtaining novel solutions [2, 3]
that are not feasible by any of the single clustering methods.

The majority of consensus functions are based on either
object co-occurrence approaches [4] or median partition [5].
Methods based on object co-occurrence consider pairs of ob-
jects, analyzing their cluster membership in every partition.
While usually providing reasonable and quality consensus
solutions these methods exhibit high memory and computa-
tional complexity which limit their practical application to
even moderate-sized datasets [6]. Median partition-based
methods search for solutions that maximize the sum of simi-
larities between partitions of an ensemble [5]. Such methods
usually lead to reasonable consensus, however, the choice of
the optimal similarity function is still an open question.

Besides the consensus function, the ensemble generation
mechanism is also considered to be an important part of clus-
tering ensembles [5]. Typically, the ensemble generation and
consensus steps are studied separately. In order to provide un-
biased comparison of consensus functions we focus entirely
on them, assuming diverse and quality partitions as available
ensemble members.

Most existing consensus functions offer a trade-off be-
tween accuracy and scalability [6, 5]. In addition, while being
complex and sometimes lacking a clear objective formulation,
these methods do not offer a straightforward interpretation of
the solution, thus providing no guarantee on its quality. More-
over, there are usually many parameters that should be care-
fully optimized for every particular task, including the target
number of clusters that in practice is often an unknown value.

To address the above mentioned limitations, we propose
a clustering ensemble framework that allows us to accurately
combine multiple input clusterings while providing descrip-
tive results interpretation. We formulate a clustering en-
semble problem as a Binary Matrix Factorization (BMF) [7]
and efficiently solve it by means of a recursive rank-one bi-
nary matrix approximation based on the Proximus algorithm
and introducing an effective initialization strategy. Besides
providing an accurate and stable consensus solution, the pro-
posed framework requires no information about the target
number or size of clusters that offers intuitive result treat-
ment and is suited for large-scale datasets and high amount
of ensemble members.

The paper is structured as follows. In Section 2 we formu-
late the clustering ensemble problem and highlight the limita-
tions of median partition and object co-occurance-based prob-
lem formulations. In Section 3, we turn the clustering en-
semble formulation into a BMF and discuss the arising con-
straints and the way to account for them. We evaluate the
proposed framework in Section 4, study its susceptibility to
ensemble quality and report the consensus performance on
synthetic and real-world datasets. We conclude our paper in
Section 5.

2. PROBLEM FORMULATION

Let X = {x1, x2, . . . , xN} be a set of N objects, where
xi is a vector in a d-dimensional feature space Rd. P =
{P1, P2, . . . , PH} is a set of H partitions (or clusterings) of
X , where each Ph = {Ch

1 , C
h
2 , . . . , C

h
Kh
} is a single partition

of X with Kh clusters satisfying
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Fig. 1: Example of five distinct partitions of a toy dataset and a consensus solution

• Ch
j 6= ∅, ∀ j = 1, . . . ,Kh

• Ch
j ∩ Ch

p = ∅, ∀ j 6= p

• ∪Kh

k=1C
h
k = X .

For each xi, we define a H-dimensional label vector yi:

yi = [P1(xi), P2(xi), . . . , PH(xi)] (1)

where Ph(xi) is the cluster label of xi in partition Ph. Since
every clustering Ph assigns symbolic labels to objects xi the
vectors yi consist of categorical values. In addition, all vec-
tors yi are forming a matrix Y = [y>1 , y

>
2 , . . . , y

>
N ]> that rep-

resents data objects in the ensemble label space. Figure 1 de-
picts an example of a clustering ensemble over N = 9 objects
clustered differently H = 5 times (color encodes cluster la-
bel). The consensus solution is depicted on the same Figure 1
and has K = 3 resulting clusters.

For the object co-occurrence-based methods [8] the con-
sensus function G maps P to a consensus solution as:

G : {Ph|h ∈ {1, . . . ,H}} → P ∗ (2)

The consensus solution for median partition-based problems
provides the maximum cumulative similarity with respect to
all clusterings in the ensemble:

P ∗ = argmax
P∈Px

H∑
h=1

S(P, Ph) (3)

where S is a similarity measure between partitions, Px is a
search space with all possible clusterings of Y . The me-
dian partition-based problem was proven to be NP-hard for
the Mirkin distance (symmetric difference distance) [5] while
the object co-occurrence-based formulation is rather arbitrary.
Moreover, both problems are formulated in a way that does
not make use of dominant objects (or centroids) and most of
the consensus functions provide final labels only.

3. PROPOSED CLUSTER ENSEMBLE APPROACH

To account for the drawbacks of the object co-occurrence- and
median partition-based problem formulation we formulate the
clustering ensemble problem as a Non-negative Matrix Fac-
torization (NMF) [9] problem where Y is factorized into a
membership matrix M and a pattern matrix Q as Y ≈MQ>,
Y,M,Q > 0 to minimize the approximation error that is the
squared Frobenius norm [10] of the residual:

argmin
M,Q

∥∥Y −MQ>
∥∥2
F

(4)

The main issue with NMF on the Y matrix is that Y is formed
from categorical data vectors since every partition within the
ensemble represents a symbolic assignment of a point to a
cluster. To account for that, we transform Y to a matrix of
indicator variables (also known as one-hot or dummy encod-
ing) obtaining Yb ∈ {0, 1}N×

∑H
h=1 Kh that represents every

partition Ph as a binary matrix of size N × Kh. For further
convenience we define T =

∑H
h=1 Kh. Due to the nature of

Yb the problem transforms to the Binary Matrix Factorization
(BMF) [7] problem where Yb is decomposed to a consensus
membership matrix M and a matrix of consensus representa-
tions Q that both have an additional constraint to be binary.
The constraint comes from the fact that the consensus clus-
tering solution has to be crisp (i.e. a non-overlapping solu-
tion) and provide interpretable results to be able to evaluate
the consensus quality. According to the described transfor-
mations, Problem 4 is now reformulated to a BMF as

argmin
Mb,Qb

∥∥Yb −MbQ
>
b

∥∥2
F

(5)

where Mb ∈ {0, 1}N×K and Qb ∈ {0, 1}K×T are restricted
to be binary. Matrix Mb consists of presence vectors spec-
ifying the consensus clustering membership of every object
xi while Qb contains dominant binary patterns of Yb that can
be interpreted as centroids in the ensemble label space. An
additional property of BMF that we would like to achieve is
based on the fact that the target number of clusters is an un-
known value and we have to induce it based on the ensemble
structure. For this we impose a constraint on matrix Qb of
being able to reconstruct Yb with a desired error ε providing a
minimum number of centroids K:

∀yi ∈ Y ∃qk : ||yi − qk||22 ≤ ε, k = {1, . . . ,K} (6)

The error ε implicitly controls the target number of clusters
K. Note that the error ε and the resulting number of clusters
K are directly linked to ensemble diversity.

To preserve the discrete properties of the data, an efficient
and elegant solution for BMF can be found by solving a rank-
one binary matrix approximation [11] that searches for two
binary vectors mb and qb whose outer product provides the
minimum distance (that is the Hamming distance for binary
vectors) from the matrix to factorize:

min
mb,qb

∥∥Yb −mbq
>
b

∥∥2
F
= min

mb,qb

N,T∑
n,t=1

|(Yb −mbq
>
b )n,t| (7)
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Since the rank-one binary matrix approximation minimizes
the number of nonzero elements in the residual matrix it pro-
vides a useful framework to implicitly assess the quality of
the consensus solution. When having such a setting there is
the possibility to solve BMF iteratively (for K = 1) without
specifying the number of clusters but relying on the aggrega-
tion of those solutions providing an error ε that would deter-
mine the optimal number of centroids. All the data objects
then would be centered around their respective centroid that
provides the minimum distance with each of them. Unfortu-
nately, it was shown that Problem 7 is NP-hard [11] and that
only approximate solutions might be reasonably found. For
that several algorithm were proposed [12, 10], some of them
with guaranteed approximation error bound [11, 13]. How-
ever, many of them require high computational resources and
deliver difficulties for high N that is common for current prac-
tical clustering tasks. Moreover, since we allow any number
of ensemble members with any number of clusters the other
dimension of the matrix Yb can be large as well.

To overcome this limitation, we consider the Proximus
algorithm [14] that performs a non-orthogonal binary matrix
factorization. The idea of Proximus is to recursively grow
a tree by employing a rank-one binary matrix approxima-
tion that splits the matrix in each node into two sub-matrices
based on their distance to a dominant pattern. The splitting is
stopped when the distance becomes less than the prescribed
bound. Since Proximus is an iterative heuristic it handles
large N and H and performs nearly in linear time.The down-
side of this is that the solution it provides is sensitive to the
initialization. For that we propose to choose an initialization
based on the maximum count of repetitive vectors in Y . Such
vectors known as data fragments [15] constitute stable groups
of objects in the label space across all clusterings and serve as
centroid candidates.

Based on Figure 1 the BMF on matrix Y solved by
rank-one binary matrix approximation provides the following
membership and centroid matrices Mb and Qb, respectively
(for convenience we converted Qb back to label representa-
tions using inverse one-hot encoding, and defined it as Qcat).

Y =


1 1 1 1 1 2 2 2 2
4 4 1 1 2 2 2 3 3
1 1 1 3 3 3 2 2 2
1 2 2 2 1 3 3 4 4
3 3 1 3 2 2 2 1 1


> Mb =

1 1 1 1 0 0 0 0 0
0 0 0 0 1 1 1 0 0
0 0 0 0 0 0 0 1 1

>

Qcat =

1 4 1 2 3
2 2 3 3 2
2 3 2 4 1


Three clusters with their respective centroids are identified.
Using matrix Mb it is possible to find out which object be-
longs to which centroid and perform further quality analysis.
According to the proposed initialization strategy, vector y8
or y9 would be chosen to start the decomposition since their
respective data fragment shows the largest cardinality.

4. EXPERIMENTAL RESULTS
In this Section, we evaluate the properties and the perfor-
mance of the proposed BMF-based consensus function that

employs the Proximus algorithm (we call it further BMFC)
and compare it with other state-of-the-art consensus func-
tions. In all experiments we generate ensembles that consist
of 12 partitions. The way these partitions were generated
is described in every subsection individually. The synthetic
cone torus, checker board, halfring, boat, petals, aggregation
and real-world ionosphere, thyroid, wine, glass, wisconsin
datasets that we use in the experiments are obtained from [16]
and UCI repository [17], respectively and are commonly used
in clustering research. In addition, we use a recent dataset
tiselac provided by the ECML-PKDD 2017 TiSeLaC chal-
lenge [18]. For every dataset the ground truth labels are
available and the number of clusters Kt is known.

4.1. Effect of error ε on number of clusters
In the first experiment, we study the effect of the error ε on the
number of clusters of the consensus solution. For that we ap-
ply BMFC on synthetic datasets while varying the normalized
error εn in the interval [0, 1] and report the number of clus-
ters on the solution on Figure 2. The normalized error εn is
defined as d εT e. To generate ensemble partitions we standard-
ize the data and run four instances of k-means, BIRCH [19]
and mini-batch k-means [20] each. For every clustering in-
stance the target number of clusters is drawn uniformly from
the interval [max(2,Kt − 2),Kt + 2], for BIRCH the val-
ues for the branching factor and the subcluster threshold are
drawn uniformly from the interval [40, 60] and [0.35, 0.65]
correspondingly. For mini-batch k-means the batch size is
dN × 10−3 + 1e.
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Fig. 2: Number of clusters K for BMFC for various values of nor-
malized error ε over clustered partitions

4.2. Effect of ensemble quality on the performance of
BMFC
In this experiment, to understand how ensemble quality af-
fects the performance of the proposed BMFC we apply ran-
dom noise that follows a Bernoulli distribution with probabil-
ity p. The noise is applied to each object label so that the la-
bel is flipped to a random cluster label with equal probability
q = p

Kt−1 . In addition, we perform random permutations of
resulting labels with uniform probability. We vary the proba-
bility of noise p in the interval [0.05, 0.5] with step size 0.05
and report the average over 100 Monte Carlo iterations Ad-
justed Rand Index (ARI) [21] (Figure 3) for BMFC and four
other state-of-the-art consensus functions CTS [22], Knowl-
edege Based (KB) [23], CSPA [8], CAtree [6] (we evaluate
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Fig. 3: ARI on four synthetic datasets for several consensus functions over noisy partitions

here only four methods in order not to overload the plots).
ARI shows the similarity between resulting clustering and the
ground truth labels providing 1.0 when they are identical in-
dependently on the cluster symbolic labels. For BMFC we
set ε = 0.9, for the other methods we set the target cluster
number K = Kt.

4.3. Performance on synthetic and real datasets
In the third experiment, we evaluate the performance of the
BMFC and the other state-of-the-art methods both on syn-
thetic and real-world datasets. In addition to methods eval-
uated in the previous experiment, we evaluate HBGF [24],
HGPA, MCLA [8], SRC and ASRS [22]. The parameters for
BMFC and other methods are set as in the previous experi-
ment. The ensemble partitions are generated as in the first
experiment. The results averaged over 100 Monte Carlo iter-
ations provide ARI with their standard deviation in Table 1.
In Table 2 we report ARI and Impurity Index (IMP) [25] for
dataset tiselac for BMFC, HBGF, CAtree, HGPA, MCLA.
IMP indicates the number of differently labeled objects in
clusters and equals 0.0 for pure clusters in the resulting parti-
tion. Because of the large size of tiselac dataset (N = 81715)
several methods that rely on the object co-occurrence matrix
failed during execution due to the lack of memory (for eval-
uation we used a working station with 48GB RAM). Addi-
tionally, for this dataset we report average execution time.

Table 2: Evaluation results on tiselac dataset
BMFC HBGF CAtree HGPA MCLA

ARI 0.35 ± 0.02 0.32± 0.01 0.31± 0.02 0.13± 0.09 0.29± 0.03
IMP 0.43 ± 0.03 0.48± 0.02 0.49± 0.03 0.46± 0.31 0.50± 0.06
Time, s 2.1 24.8 23.2 35.7 24.1

4.4. Discussion
By analyzing the evaluation results we observe that the pro-
posed BMFC demonstrates high operational characteristics.

Figure 2 confirms the expected behavior of BMFC with dif-
ferent allowable error bounds showing that for large errors
the number of discovered clusters is decreasing. This pro-
vides a useful mechanism to affect the number of clusters
of the final solution when it is required. Figure 3 indicates
that BMFC as well as the other methods are sensitive to the
ensemble quality, however, for moderate noise level, BMFC
demonstrates resistance to noise and provides acceptable re-
sults. From the all three experiments we observe that the
proposed BMFC along with providing high operational per-
formance yields low variance. This property indicates the
proper choice of the proposed initialization technique that is
able to bring the algorithm to the representative objects as it
starts. An interesting observation on BMFC can be also done
from Tables 1 and 2. While showing good results in terms of
ARI on commonly used real-world and synthetic datasets, on
large datasets tiselac BMFC clearly outperforms other meth-
ods both with respect to solution quality and execution time.
This shows the potential of the proposed BMFC to be used
on large-scale consensus clustering problems without perfor-
mance degradation.

5. CONCLUSIONS

We addressed the clustering ensembles problem formulating
it as the binary matrix factorization that does not require the
target number of clusters to be provided while delivering en-
semble centroids for better result interpretation. We demon-
strated an effective way to solve the problem with the help
of one of the existing rank-one binary matrix approximation
heuristics. Additionally, we proposed an effective initializa-
tion scheme allowing convergence to a stable and quality so-
lution. We experimentally studied the properties of the pro-
posed framework and compared it with the other state-of-the-
art consensus functions, demonstrating its efficacy and stabil-
ity across multiple synthetic and real-world problems.

Table 1: ARI on real-world and synthetic data sets for multiple consensus functions
BMFC HBGF CAtree HGPA MCLA CSPA KB CTS SRS ASRS

ionosphere 0.21 ± 0.03 0.18± 0.05 0.16± 0.05 0.02± 0.02 0.17± 0.02 0.17± 0.02 0.03± 0.06 0.18± 0.08 0.18± 0.01 0.17± 0.02
thyroid 0.24 ± 0.04 0.14± 0.13 0.11± 0.04 0.05± 0.03 0.13± 0.10 0.13± 0.09 0.12± 0.05 0.23± 0.01 0.23± 0.03 0.12± 0.02
wine 0.80± 0.07 0.81 ± 0.04 0.74± 0.17 0.40± 0.24 0.79± 0.04 0.79± 0.02 0.17± 0.19 0.81 ± 0.04 0.79± 0.04 0.72± 0.10
glass 0.26 ± 0.03 0.19± 0.03 0.15± 0.03 0.14± 0.04 0.18± 0.04 0.15± 0.03 0.08± 0.05 0.24± 0.03 0.24± 0.02 0.24± 0.02
wisconsin 0.89 ± 0.04 0.87± 0.03 0.84± 0.03 0.01± 0.01 0.87± 0.01 0.47± 0.01 0.12± 0.10 0.87± 0.03 0.87± 0.03 0.85± 0.02
boat 0.44± 0.05 0.41± 0.01 0.35± 0.06 0.33± 0.16 0.43± 0.05 0.45 ± 0.11 0.14± 0.13 0.41± 0.04 0.40± 0.03 0.43± 0.06
petals 0.95± 0.11 0.91± 0.13 0.91± 0.10 0.85± 0.20 0.96± 0.03 0.97 ± 0.08 0.21± 0.20 0.89± 0.13 0.95± 0.07 0.92± 0.10
aggregation 0.83 ± 0.06 0.74± 0.04 0.65± 0.06 0.51± 0.13 0.72± 0.04 0.55± 0.01 0.29± 0.19 0.80± 0.06 0.79± 0.03 0.81± 0.08
cone torus 0.37 ± 0.03 0.35± 0.02 0.35± 0.04 0.18± 0.10 0.35± 0.04 0.37 ± 0.03 0.15± 0.13 0.37 ± 0.04 0.36± 0.06 0.37 ± 0.06
checker board 0.12± 0.08 0.14± 0.09 0.06± 0.04 0.13± 0.10 0.09± 0.04 0.12± 0.10 0.08± 0.05 0.14± 0.07 0.13± 0.06 0.15 ± 0.09
halfring 0.58 ± 0.06 0.54± 0.02 0.34± 0.12 0.04± 0.01 0.47± 0.10 0.25± 0.01 0.24± 0.22 0.56± 0.03 0.58 ± 0.07 0.56± 0.03
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