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ABSTRACT

The paper considers the problem of estimating the covariance
matrices of multiple classes in a low sample support condi-
tion, where the data dimensionality is comparable to, or larger
than, the sample sizes of the available data sets. In such condi-
tions, a common approach is to shrink the class sample covari-
ance matrices (SCMs) towards the pooled SCM. The success
of this approach hinges upon the ability to choose the opti-
mal regularization parameter. Typically, a common regular-
ization level is shared among the classes and determined via
a procedure based on cross-validation. We use class-specific
regularization levels since this enables the derivation of the
optimal regularization parameter for each class in terms of
the minimum mean squared error (MMSE). The optimal pa-
rameters depend on the true unknown class population co-
variances. Consistent estimators of the parameters can, how-
ever, be easily constructed under the assumption that the class
populations follow (unspecified) elliptically symmetric distri-
butions. We demonstrate the performance of the proposed
method via a simulation study as well as via an application to
discriminant analysis using both synthetic and real data sets.

Index Terms— Covariance matrix estimation, regulariza-
tion, elliptical distribution, classification.

1. INTRODUCTION

The problem of estimating the covariance matrices of K
classes appears in classification problems as well as in graph-
ical models, where in the latter the inverse of the covariance
matrix gives information about the conditional dependence
structure of the graph [1]. In the context of classification, the
covariance matrices determine the shape of the data within
each class in the feature space. In low sample support con-
ditions, where the data dimensionality p is comparable to, or
larger than, the sample sizes nk available from each popu-
lation, conventional SCMs are susceptible to high variance
and may not even be positive definite and hence invertible.
Therefore, regularized sample covariance matrix (RSCM)
estimators are needed. Their usefulness has been validated
in many challenging data analysis problems [2] [3] [4]. The
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level of regularization in the RSCM is determined by the
regularization parameter, which is typically chosen via cross-
validation. However, procedures based on cross-validation
can be computationally prohibitive, especially when p is
large. Hence, simple methods that do not require excessive
tuning of hyperparameters are more desirable, especially in
applications where the aforementioned conditions are pre-
dominant, such as in remote sensing [5].

We present an analytical method for choosing the regu-
larization levels of a particular form of the RSCM, where the
individual class SCMs are shrunk towards the pooled SCM.
This type of regularization often improves the estimation ac-
curacy when there is low sample support and when the popu-
lation covariance matrices share a common structure. In clas-
sification, this type of regularization is used in regularized
discriminant analysis [2] (RDA), in which a common regular-
ization level for the classes is determined via cross-validation.
Class-specific regularization has been used in a slightly differ-
ent RSCM formulation in [6], where the parameters were like-
wise chosen using a method based on cross-validation. Our
approach is different in that we derive analytical expressions
for the optimal regularization parameters of the classes. Even
though the derived expressions depend on the true unknown
population covariance matrices, consistent estimates can eas-
ily be constructed in a similar fashion as in [7], which stud-
ied the single covariance matrix estimation problem. We only
need to assume that the class populations follow (possibly dif-
ferent unspecified) elliptical distributions with finite 4th order
moments. In the conducted simulations, the proposed method
performed not only better than the method based on cross-
validation, but also enjoys the advantages of low computa-
tional complexity and ease of implementation.

The remainder of this paper is organized as follows. Sec-
tion 2 introduces the proposed estimator and an analytical ex-
pression for the optimal class-specific regularization param-
eter is derived. In Section 3, we construct an estimator of
the optimal regularization parameter under the assumption of
(unspecified) elliptical populations. In Section 4, we assess
the mean squared error (MSE) performance of the proposed
method via a simulation study. In Section 5, the method is
applied to discriminant analysis, where the classification per-
formance is evaluated using both synthetic and real data ex-
amples. Section 6 concludes the paper.
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2. OPTIMAL REGULARIZATION PARAMETER

Consider observing independent and identically distributed
(i.i.d.) p-dimensional samples from K different classes (or
populations), each class having nk number of samples. Let
{xk,i}nk

i=1 denote the data set of the kth class. The scatter of
the data in the p-dimensional feature space is characterized by
the covariance matrices

Σk = E[(xk − µk)(xk − µk)>],

where µk = E[xk] and xk denotes a random vector from the
kth class. Let xk = (1/nk)

∑nk

i=1 xk,i and

Sk =
1

nk − 1

nk∑
i=1

(xk,i − xk)(xk,i − xk)>

denote the sample mean vector and the (unbiased) SCM of
the kth class. We are interested in an RSCM defined for class
k as

Σ̂k(βk) = βkSk + (1− βk)S, (1)

where βk ∈ [0, 1], and S denotes the pooled SCM, i.e., S =∑K
k=1 πkSk, where πk = nk/(

∑K
j=1 nj). For ease of no-

tation, we will omit the subscript k from βk hereafter. Our
goal is to determine the optimal regularization parameter β?

for class k which minimizes the MSE between the regularized
estimator (1) and the true population covariance matrix,

β? = arg min
β∈[0,1]

E
[
‖Σ̂k(β)−Σk‖2F

]
, (2)

where ‖·‖F denotes the Frobenius matrix norm, i.e., ‖A‖2F =
tr
(
A>A

)
for any square matrix A.

Next, we derive the optimal regularization parameter.
Write Lk(β) = E

[
‖Σ̂k(β)−Σk‖2F

]
. Then note that

Lk(β) = E
[
‖βSk + (1− β)S−Σk‖2F

]
= β2E

[
‖Sk − S‖2F

]
+ E

[
‖Σk − S‖2F

]
− 2βE [tr ((Sk − S)(Σk − S))] . (3)

The second derivative L′′k(β) is positive whenever Sk 6= S.
Thus under this assumption, the loss function is strictly con-
vex and the optimal regularization parameter value can be
found by solving L′k(β?) = 0, which yields

β? =
E [tr ((Sk − S)(Σk − S))]

E
[
‖Sk − S‖2F

] . (4)

It can be seen that if Sk ≈ Σk, i.e., the SCM is close to the
true covariance matrix, then β? ≈ 1, and the estimator gives
all the weight to the SCM. By expanding the expressions in
the numerator and denominator of (4), we get

β? =
tr
(
Σ2
k

)
− E [tr (SkS)]− tr (ΣΣk) + E

[
tr
(
S2
)]

E [tr (S2
k)]− 2E [tr (SkS)] + E [tr (S2)]

,

(5)

where Σ = E [S] =
∑K
k=1 πkΣk,

E
[
tr
(
S2
)]

=
∑
j π

2
jE
[
tr
(
S2
j

)]
+
∑
i 6=j πiπjtr (ΣiΣj) ,

E [tr (SkS)] = πkE
[
tr
(
S2
k

)]
+
∑K
j=1,j 6=k πjtr (ΣkΣj) ,

and tr (ΣkΣ) = πktr
(
Σ2
k

)
+
∑K
j=1,j 6=k πjtr (ΣkΣj). With

some further algebra, β? in (5) becomes

β? =
(1− πk)tr

(
Σ2
k

)
− πkE

[
tr
(
S2
k

)]
+ δk

(1− 2πk)E [tr (S2
k)] + δk

, (6)

where

δk =
∑
j π

2
jE
[
tr
(
S2
j

)]
− 2

∑K
j=1,j 6=k πjtr (ΣkΣj)

+
∑
i6=j πiπjtr (ΣiΣj) .

The value of the MSE at the optimum is then

Lk(β?) = (β?)2E
[
tr
(
S2
k

)]
+ (1− β?)2E

[
tr
(
S2
)]

+ (1− 2β?)tr
(
Σ2
k

)
+ 2β?(1− β?)E [tr (SkS)]

− 2(1− β?)tr (ΣΣk) , (7)

which follows from a straightforward calculation of (3).
The optimal regularization parameter depends on the un-

known true covariance matrices. Hence, this parameter must
be estimated, which forms the topic of the next section.

3. ESTIMATING THE OPTIMAL
REGULARIZATION PARAMETER

An estimate β̂ of the optimal regularization parameter β?

of class k in (6) is obtained by the estimates of tr(Σ2
k),

E
[
tr
(
S2
k

)]
, and tr (ΣiΣj), where i 6= j. The last expres-

sion can simply be estimated with tr (SiSj), which follows
from independence, i.e., E [tr (SiSj)] = tr (E [Si]E [Sj ]) =
tr (ΣiΣj).

We now assume that the random sample of the kth class,
{xk,i}nk

i=1, is from an elliptically symmetric distribution with
mean vector µk and covariance matrix Σk, and that it pos-
sesses finite 4th order moments. Then the probability density
function (p.d.f.) of xk,i is of the form

fk(x) = Ck|Σk|−1/2gk
(
(x− µk)

>
Σ−1k (x− µk)

)
,

where gk : [0,∞) → [0,∞) is a fixed function, called the
density generator, which is independent of x, µk and Σk, and
Ck is a normalizing constant ensuring that fk(x) integrates
to 1. We denote this case as xk,i ∼ Ep(µk,Σk, gk). The
functional form of the density generator gk(·) determines the
elliptical distribution. For example, the multivariate normal
(MVN) distribution is obtained when gk(t) = exp(−t/2).
In our derivations, we do not have to assume that the den-
sity generators are the same for each class or even specify the
elliptical populations; e.g., gk(t) can be the generator of the
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multivariate t-distribution, MVN, or any other elliptical distri-
bution with finite 4th order moments. Under the assumption
that xk,i ∼ Ep(µk,Σk, gk) and by using the results from [8],
one can show that

E
[
tr
(
S2
k

)]
= pη2k {τ1(p+ γk) + (τ2 + 1)γk} , (8)

where τ1 = (nk − 1)−1 + κk/nk, τ2 = κk/nk, ηk =

tr (Σk) /p, γk = ptr
(
Σ2
k

)
/tr (Σk)

2, and κk is the elliptical
kurtosis parameter of the kth population,

κk = (1/3) · kurt(xj), (9)

where xj denotes any element of xk,i ∼ Ep(µk,Σk, gk) and
kurt(x) denotes the kurtosis of a random variable x.

A consistent estimate β̂ of β? for the kth class is obtained
given consistent estimates of ηk, γk and κk. An obvious esti-
mate of ηk is η̂k = tr (Sk) /p. For γk, we used the estimator

γ̂sgn,k = ptr
(
S2

sgn,k

)
− p

nk
, (10)

which uses the sample sign covariance matrix [9],

Ssgn,k =
1

nk

nk∑
i=1

(xk,i − µ̂k)(xk,i − µ̂k)>

‖xk,i − µ̂k‖2
, (11)

where µ̂k = arg min µ

∑nk

i=1 ‖xk,i − µ‖ is the spatial sam-
ple median [10] of the kth data set. It was shown in [11] that
γ̂sgn,k is a consistent estimator of γk under the random ma-
trix theory regime. Their proof considered the centered case
(µk = 0), where the centering by the spatial sample median
was not required in (11). We have not yet extended this result
to the case of unknown center, however, the estimator (10)
performed well in our simulations. As in [7], a consistent
estimator of κk is

κ̂k = max
{
− 2
p+2 ,

1
3p

∑p
j=1 q̂k,j

}
, (12)

where q̂k,j is the sample kurtosis of the jth variable of the
kth class, i.e., q̂k,j = m

(4)
k,j/(m

(2)
k,j)

2 − 3, where m(l)
k,j =

(1/nk)
∑nk

i=1((xk,i)j − (xk)j)
l denotes the lth order sample

moment of the jth variable of the kth class.
As the final estimate of the optimal regularization param-

eter, we used max{0,min{1, β̂}} since β? needs to be within
[0, 1].

4. SIMULATION STUDY

We now illustrate the performance of the proposed method
via a simulation study. We generated training data of dimen-
sion p = 20 comprising K = 4 classes and n =

∑
k nk =

100 samples. The data was generated from a Student’s tν-
distribution with ν = 10 degrees of freedom. The first class,
k = 1, had zero mean and the subsequent classes, k = 2, 3,
and 4, had means in orthogonal directions such that ‖µk‖ =
1 + k. We simulated three different set-ups:

Table 1. The empirical NMSE L̃k for the covariance esti-
mates in the set-ups 1 to 3 (from top to down). The corre-
sponding standard deviations are shown in parenthesis.

L̃1 L̃2 L̃3 L̃4 Sum

Oracle 0.99 (0.41) 0.52 (0.16) 0.27 (0.06) 0.28 (0.03) 2.06 (0.48)
Prop 1 0.98 (0.38) 0.50 (0.15) 0.28 (0.06) 0.29 (0.03) 2.04 (0.45)
Pool 4.47 (1.15) 0.62 (0.21) 0.27 (0.06) 0.28 (0.03) 5.63 (1.42)
SCM 1.13 (0.48) 1.12 (0.41) 1.20 (0.67) 1.18 (0.53) 4.63 (1.07)

Oracle 2.13 (1.09) 0.70 (0.29) 0.32 (0.12) 0.24 (0.05) 3.40 (1.23)
Prop 1 2.07 (0.97) 0.67 (0.20) 0.31 (0.08) 0.24 (0.05) 3.29 (1.06)
Pool 6.80 (1.85) 0.96 (0.37) 0.32 (0.13) 0.24 (0.05) 8.32 (2.38)
SCM 2.89 (1.63) 1.42 (0.84) 0.92 (0.35) 0.73 (0.41) 5.95 (1.94)

Oracle 1.25 (0.71) 0.93 (0.40) 0.40 (0.17) 0.24 (0.09) 2.81 (0.90)
Prop 1 1.18 (0.60) 0.88 (0.30) 0.38 (0.12) 0.24 (0.07) 2.68 (0.72)
Pool 6.25 (1.77) 2.04 (0.73) 0.43 (0.23) 0.29 (0.05) 9.01 (2.71)
SCM 1.50 (1.05) 1.32 (0.75) 0.86 (0.34) 0.39 (0.31) 4.07 (1.36)

1. The true covariance matrices were Σk = kI, and the
sample sizes were nk = 25 for all k.

2. The true covariance matrices were Σk = kI, and the
sample sizes were nk = 10 · k.

3. The true covariance matrices were generated such that
the ijth entry of the covariance matrix was (Σk)ij =

kρ
|i−j|
k , where ρ1 = −0.6, ρ2 = −0.2, ρ3 = 0.2, and

ρ4 = 0.6, and the sample sizes were nk = 10 · k.

We report the empirical normalized MSE (NMSE), L̃k(Σ̂k) =

Ave‖Σ̂k−Σk‖2F/‖Σk‖2F, of our proposed estimator (Prop 1)
and the oracle estimator (Oracle), which uses the true values
of ηk, γk, κk, and Σk in (6) and (8). The NMSEs of the SCM
and the pooled SCM (Pool) are also shown. The results were
averaged over 300 Monte-Carlo (MC) trials and are given
in Table 1. The proposed method (Prop 1) provided not only
a significant improvement both over the SCM and the pooled
SCM by yielding the smallest NMSEs and standard devia-
tions, but was also somewhat robust to estimation errors in
the sense that it was able to perform at the level of the oracle
estimator.

5. APPLICATION TO DISCRIMINANT ANALYSIS

In linear and quadratic discriminant analysis, one uses a dis-
criminant rule which assigns any new observation x to class
k̂, such that it minimizes the quadratic discriminant function

k̂ = arg min
k

(x− x̄k)
>

Σ̂
−1
k (x− x̄k) + log |Σ̂k|,

where Σ̂k denotes an estimator of Σk. In quadratic discrim-
inant analysis (QDA), one uses Σ̂k = Sk for all k, whereas
in linear discriminant analysis (LDA), one uses Σ̂k = S for
all k. In RDA [2], Σ̂k(βk) of (1), using βk = β for all k, is
further regularized towards a scaled identity matrix by

Σ̂k(α, β) = αΣ̂k(β) + (1− α)
(
tr(Σ̂k(β))/p

)
I, (13)
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Fig. 1. The misclassification rate×100 and the corresponding
boxplots of β̂k for the set-ups 1, 2 and 3 shown from top to
bottom. The black triangles denote the oracle values β?k .

and α, β ∈ [0, 1] are common over the classes and chosen
via cross-validation. Additional regularization via parameter
α helps to stabilize the estimates if the total sample size n =∑
k nk is small compared to p. We also applied (13) to further

shrink the covariance estimates obtained by our method using
the approach in [7], thus acquiring the estimates of αk by

α̂k = max

{
0,

Tk

Tk + 1
nk

(κ̂k(2γ̂k + p) + γ̂k + p)

}
, (14)

where Tk = γ̂k − 1, yielding an estimator which we abbrevi-
ate Prop 2. Unlike in the single covariance matrix estimation
problem of [7], Prop 2 does not have the interpretation of be-
ing the MMSE estimator.

In our next example, we used the same simulation set-ups
as in Section 4. However, for each MC trial, an additional
test data set comprising 10 · nk observations from each class
was generated and used for computing the misclassification
rate. In addition to our proposed estimators (Prop 1 and 2),
the results are reported for LDA, RDA, and CV, of which the
last uses only a common cross-validated β in (1) for shrink-
ing the SCMs towards the pooled SCM. Using 10-fold cross-
validation, the grid of the regularization parameter values for
α and β ranged from 0 to 1 with a step of 0.05. In situations,
where equal training errors were obtained with distinct values
of α and β, we averaged the performance of all of them. The
QDA estimate was omitted, since it does not exist if the SCM
is not invertible. The average misclassification rates, over 300
MC trials, are given in Figure 1 along with the boxplots of the
estimated regularization parameters β̂k. The black triangles in
the boxplots denote the oracle values β?k computed using the

2 4 6 8 10 12 14 16 18 20 22

Prop 1
Prop 2

LDA
CV

RDA

0 5 10 15 20 25 30

Prop 1
Prop 2

LDA
CV

RDA

Fig. 2. Misclassification rate ×100 for the glass and iono-
sphere data shown from top to bottom.

true values of ηk, γk, κk, and Σk in (6) and (8). As shown, the
optimal regularization parameters were estimated reasonably
well. Also, Prop 1 performed better than CV, whereas Prop 2
performed at the level of RDA, if not slightly better.

Next, we applied the proposed methods to the following
real data examples obtained from the UCI Machine Learn-
ing Repository [12]. The glass data set had p = 9 variables
and sample sizes of n1 = 51 (window glass) and n2 = 163
(non-window glass). The ionosphere data set had p = 32
variables1 and sample sizes n1 = 126 (bad radar return) and
n2 = 225 (good radar return). A fraction 1/4 of the samples
from each class were chosen randomly as training data in each
MC trial, and the remaining samples were used as test data.
This made the training data sizes comparable to the dimension
for at least one of the classes. The misclassification rates were
averaged over 300 MC trials and are shown in Figure 2. In ad-
dition to the proposed estimators, the performances of LDA,
CV, and RDA are given. As Figure 2 shows, Prop 1 performed
better than CV, whereas Prop 2 and RDA performed equally
well.

6. CONCLUSION

We considered joint covariance matrix estimation of multi-
ple classes, where the SCMs of the classes are individually
regularized towards the pooled SCM. We derived the optimal
class-specific regularization parameters and showed how they
could be estimated when the data is considered to be ellipti-
cally distributed. The conducted synthetic simulation study
showed that the optimal regularization parameters could be
estimated with an MSE performance close to the optimal or-
acle level. When applied to discriminant analysis classifica-
tion, the conducted synthetic and real data simulations indi-
cated that the performance of the proposed methods are on
a par with, and often better than, the computationally more
intensive methods based on cross-validation.

1Two variables, which were zero for all samples in the classes, were re-
moved from the original data.
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[10] B. M. Brown, “Statistical uses of the spatial me-
dian,” Journal of the Royal Statistical Society. Series
B (Methodological), vol. 45, no. 1, pp. 25–30, 1983.

[11] Teng Zhang and Ami Wiesel, “Automatic diagonal load-
ing for Tyler’s robust covariance estimator,” in IEEE
Statistical Signal Processing Workshop (SSP 2016),
2016, pp. 1–5.

[12] M. Lichman, “UCI machine learning repository,”
http://archive.ics.uci.edu/ml, 2013.

4228


