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ABSTRACT

Diagnosis of melanoma is fraught with uncertainty,
and discordance rates among physicians remain
high because of the lack of a definitive criterion.
Motivated by this challenge, this paper first in-
troduces the Patch Weyl transform (PWT), a 2-
dimensional variant of the Weyl transform. It then
presents a method for classifying pump-probe im-
ages of melanocytic lesions based on the PWT
coefficients. Performance of the PWT coefficients
is shown to be superior to classification based on
baseline intensity, on standard descriptors such as
the Histogram of Oriented Gradients (HOG) and
Local Binary Patterns (LBP), and on coefficients
derived from PCA and Fourier representations of
the data.

Index Terms— Image processing, Weyl trans-
form, Convolution, Melanoma classification, Pump-
probe images

1. INTRODUCTION

Melanoma is the fifth most common cancer in men
and the seventh most common cancer in women in
the United States [1]. In 2015, almost 74,000 people
were diagnosed with invasive melanoma and nearly
10,000 people died from it [2]. Early detection
of malignant melanoma is crucial in reducing the
mortality rate [3]. Clinical diagnosis of melanoma

is challenging mainly because many benign lesions
have overlapping features with melanoma and no
single criterion can be used to correctly classify the
lesions.

Although histopathologic analysis and biopsy
still remain the gold standards for diagnosis, inter-
pretations vary among physicians themselves [4];
e,g., a study found a discordance rate of 14% [5].
False positive diagnosis occurs frequently; thus,
patients are overburdened with increased medical
costs and unnecessary melanoma treatments.

Because melanoma skin lesions are easily ac-
cessible, many optical imaging technologies have
been utilized to capture possibly conclusive sets
of features that may classify different stages of
melanoma. It was recently found that the bio-
chemical composition of melanin assessed with the
pump-probe images of skin lesions is effective in
distinguishing benign nevi from the melanoma [6].
However, it was not sufficient to classify different
stages of melanoma.

The Weyl transform was introduced in [7] as a
powerful method for capturing multiscale period-
icity of image patches. In this paper, we propose
implementation of the new variant of the Weyl
transform, which we call the Patch Weyl transform,
in the classification of the pump-probe images of
the melanocytic lesions. We show empirically that
the Patch Weyl transform coefficients perform much
better in classification compared to pixel-averaged
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methods, standard descriptors such as LBP and
HOG, and the coefficients derived from PCA and
Fourier transform.

2. BACKGROUND

The following section provides necessary back-
ground information. Section 2.1 discusses the types
of lesions explored in this paper. Section 2.2 ex-
plains the previous version of the Weyl transform.

2.1. Melanocytic Lesions

Benign melanocytic lesions, which include mac-
ule and nevi, often impede accurate diagnosis of
melanoma. Macules are difficult to distinguish clin-
ically from melanoma; nevi share many histological
features with melanoma [8]. Melanoma is identified
based on criterion such as increased melanocytic
density, confluence, and atypia [9]. Hyperplasia
currently has no clear definition; it typically shares
one or two of the melanoma criterion above [9].

2.2. Weyl Transform

In [7], the Weyl coefficients were calculated from
the trace inner products of the covariance matrix
obtained from a vectorized patch of length 2m

with signed permutation matrices from the binary
Heisenberg-Weyl group, denoted as {D(a, b)}, in-
dexed by binary m-tuple a = {am−1 . . . a0}T ∈
Zm
2 and b = {bm−1 . . . b0}T ∈ Zm

2 , take the form

D(a, b) := (Xam−1Zbm−1)⊗ . . .⊗ (Xa0Zb0),

where

X =

[
0 1
1 0

]
, Z =

[
1 0
0 −1

]
.

Given a vectorized patch y, we define its Weyl co-
efficients wa,b(y) to be

wa,b(y) :=
1

2m/2
Tr[yyT ·D(a, b)].

3. METHODOLOGY

The data set consists of 637 images of melanocytic
samples - hyperplasia (71), macule (119), melanoma
(335) and nevi (112)-, each of size 420µm×420µm,
obtained from pump-probe microscopy of vulva-
melanoma lesions, which provide a good start-
ing point to test computational algorithms since
these lesions tend to be highly pigmented and thus
higher signal to noise ratio compared to skin le-
sions. Each image contains only one lesion. We
randomly choose 50% of the images from each
class as training and rest as testing.

3.1. Patch Weyl Transform

Here, we propose a variant of the Weyl transform
used in [7] in which we replace the covariance ma-
trix of a vectorized patch with the image patch itself.
In the new Weyl transform, which we will refer to
as the Patch Weyl transform (PWT), we write a
patch P as the sum of symmetric (P + PT )/2 and
a skew-symmetric matrix (P − PT )/2, so that it is
specified by a pair of Hermitian matrices. Because
Heisenberg-Weyl matrices form a basis for the real
vector space of Hermitian matrices, a patch can
be described by two sets of coefficients, which we
define as symmetric or WR and skew-symmetric or
WQ.

PWT turns out to be more scalable than the pre-
vious version in [7], which expands an image patch
into a higher dimension, limiting the applicability
of the transform to only very small patch sizes (e.g.
4 × 4 pixels). PWT, however, maintains the same
dimension as the patch and thus is not limited by
the size of the input. Any square patch of dimension
2m, where m ∈ N, is applicable.

PWT also retains some key properties of the
original Weyl transform. Primarily, the PWT fea-
tures detect periodicity. In addition, the magnitudes
of the PWT coefficients are covariant under the
group of transformation of the form X → φ∗Xφ,
where the possible choices for φ correspond to ele-
ments of the binary Symplectic group.

Lastly, PWT allows convolution operation,

4210



Classification Base HOG LBP PCA Fourier WR WQ WR and WQ

Melanoma VS Other 59% 65% 68% 70% 78% 96% 93% 94%
Macule VS Other 79% 80% 77% 86% 87% 99% 97% 98%

Nevi VS Other 74% 76% 75% 83% 90% 98% 95% 99%
Hyperplasia VS Other 76% 83% 85% 89% 89% 98% 97% 98%

Table 1: Classification accuracy achieved by the proposed Weyl Descriptors (WR, WQ, and both WR and
WQ) compared to the baseline and other commonly used descriptors: HOG, LBP, PCA, Fourier.

which was not considered in [7]. For any two matrix
A and B with same order, following equivalence
between the trace product and Hadamard product
holds: Tr[AT · B] =

∑
i,j [A ◦ B]ij . Computation

of the PWT coefficients, which is a trace inner prod-
uct, is essentially a convolution withD(a, b)s as the
filters. Thus, PWT application extends to a deep
learning, such as convolutional neural networks.

3.2. Preprocessing

We preprocess the images to ”concentrate” the
salient regions of interest. Graph-based approach is
adopted, where we construct a strongly connected
graph G using pixel of the image as its node [10].
Then, we define Markov chain onG and compute its
equilibrium distribution to find the most salient re-
gions. Figure 1 shows the results of preprocessing.

3.3. Feature Selection

For each preprocessed pump-probe image, we ex-
tract the magnitudes of WR and WQ coefficients,
each of which is returned as a square matrix, and
vectorize them. Then from the training data sets,
the top K WR and WQ coefficients for each lesion
are selected using the following algorithm. Here
is an example of selecting features from the WR

coefficients for classifying class c. We denote p
and q to be the number of c images and of non-
c images from the training sets, respectively. Let
W+,i be the ith column of the matrix W+, where
W+,i = WR coefficients of the ith c image. W−
is of similar matrix constructed from the non-c im-
ages. Let Y = 1

pq

∑
i,j |W+,i − W−,j |. We rank

(a) Pump-probe images

(b) Preprocessed pump-probe images

Fig. 1: Examples of images of different melanocytic
samples.

the coefficients in descending order of Y . Same
algorithm is applied to find the top K features for
other class from PWT coefficients. From them, we
generate three different feature vectors: (1) Top K
WR, (2) Top K WQ, (3) Top K WR and Top K WQ,
with total of 2K coefficients.

The unknown patch is assigned a label of its
nearest neighbor training patch based on the Eu-
clidean distance between them. Accuracy of the
PWT coefficients is compared to the baseline in-
tensity measures, HOG, LBP, Fourier, and PCA.
Similar feature selection method is applied for the
Fourier and PCA coefficients. For all of the experi-
ments, the preprocessed images are used.

4. RESULTS

We perform One versus All analysis for each type
of lesion. For each class, PWT descriptors outper-
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(a) Melanoma VS Others (b) Macule VS Others

(c) Nevi VS Others (d) Hyperplasia VS Others

Fig. 2: Classification accuracy of the PWT Descriptors for each type of melanocytic lesion. Each curve
represents the different feature vectors used to represent the images.

form the baseline measure (Fig. 2). From the Ta-
ble 1, we see that all forms of PWT feature vec-
tors classify lesions much more accurately than the
HOG and LBP, which performed relatively well in
texture classification [7]. We also compared PWT
features with the coefficients derived from PCA and
Fourier transform, both of which involve generat-
ing the basis representation of the image, just as
the Weyl transform generates the Heisenberg matri-
ces which form the orthonormal basis of hermitian
matrices [7]. PWT coefficients clearly outperform
them (Table 1). Comparison of the performance of
the WR coefficients, which capture information on
symmetry, and WQ coefficients, which capture in-
formation on anti-symmetry, suggests that the sym-
metricity plays a bigger role in differentiating be-

tween lesion images. PWT descriptors may be po-
tentially more useful and effective features to be ap-
plied in imaging analysis.

The results show that the PWT derived features,
which provide information on periodicity and sym-
metry, perform well in the classification of the le-
sion images. Furthermore, we can reach the maxi-
mum accuracy after using approximately 100 coef-
ficients for all sets of PWT descriptors. Since PWT
is not limited by the size of the input data as the
original Weyl transform, PWT is far more practical
and diverse in application. Moreover, as discussed
in section 3.1, PWT can be incorporated in deep
learning architecture, such as the convolutional neu-
ral networks (CNNs), to learn much more complex
characteristics of the data.
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