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ABSTRACT
We propose a modification of linear discriminant analysis,
referred to as compressive regularized discriminant analysis
(CRDA), for analysis of high-dimensional datasets. CRDA
is especially designed for feature elimination purpose and
can be used as gene selection method in microarray studies.
CRDA lends ideas from `q,1 norm minimization algorithms
in the multiple measurement vectors (MMV) model and uti-
lizes joint-sparsity promoting hard thresholding for feature
elimination. A regularization of the sample covariance matrix
is also needed as we consider the challenging scenario where
the number of features (variables) is comparable or exceeding
the sample size of the training dataset. A simulation study
and four examples of real life microarray datasets evaluate
the performances of CRDA based classifiers. Overall, the
proposed method gives fewer misclassification errors than
its competitors, while at the same time achieving accurate
feature selection.

Index Terms— Classification, gene expression microar-
rays, joint-sparse recovery, regularized discriminant analysis.

1. INTRODUCTION

Sparse signal approximations are widely used in many ap-
plications such as regression or classification where variable-
selection (i.e., ranking and selection of features) aims at
reducing the number of variables (or features) without sac-
rificing accuracy measured by the test error. Reduction in
the set of features facilitates interpretation as well as sta-
bilizes estimation. This is often deemed necessary in the
high-dimensional (HD) context where the number of fea-
tures, p, is often several magnitudes larger than the number
of observations, n, in the training dataset (i.e., p� n).

Many classification techniques assign a p-dimensional ob-
servation x to one of the G classes (groups or populations)
based on the following rule

x ∈ group
[
g̃ = arg max

g
dg(x)

]
, (1)

where dg(x) is called the discriminant function for popula-
tion g ∈ {1, . . . , G}. In linear discriminant analysis (LDA),
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dg(x) is a linear function of x, dg(x) = x>βg + cg , for
some constant cg ∈ R and vector βg ∈ Rp. The vector
βg = βg(Σ) depends on the unknown covariance matrix Σ
of the populations (via its inverse matrix) which is commonly
estimated by the pooled sample covariance matrix (SCM). In
the HD setting, the SCM is no-longer invertible, and there-
fore regularized SCM (RSCM) Σ̂ is used for constructing an
estimated discriminant function d̂g(x). Such approaches are
commonly referred to as regularized LDA methods, which we
refer shortly as RDA. See e.g., [1–5].

Next note that if the i-th entry of βg is zero, then the i-th
feature does not contribute in the classification of g-th popu-
lation. To eliminate unnecessary features, many authors have
proposed to shrink βg using element-wise soft-thresholding,
e.g., as in shrunken centroids (SC)RDA method [1]. These
methods are often difficult to tune because the shrinkage
threshold parameter is the same across all groups, but differ-
ent populations would often benefit from different shrinkage
intensity. Consequently, they tend to yield rather higher
false-positive (FP) rates.

Element-wise shrinkage does not achieve simultaneous
feature selection as the eliminated feature from group i may
still affect the discriminant function of group j. In this pa-
per, we propose compressive regularized discriminant analy-
sis (CRDA) that promotes simultaneous joint-sparsity to pick
fewer and differentially expressed variables. CRDA lends
ideas from mixed `q,1 norm minimization in the multiple mea-
surement vectors (MMV) model [6], which is an extension of
compressed sensing model to multivariate case. CRDA uses
`q,1-norm based hard-thresholding which has the advantage
of having a shrinkage parameter that is much easier to tune:
namely, joint-sparsity levelK ∈ {1, . . . , p} instead of shrink-
age threshold ∆ ∈ [0,∞) as in SCRDA. Our approach also
employs a different RSCM estimator compared to SCRDA.
The used RSCM has the benefit of being able to attain the
minimum mean squared error [7, 8] for an appropriate choice
of the regularization parameter. The optimal pair of the tun-
ing parameters can be found via cross validation (CV), but we
also propose a computationally simpler approach that uses the
RSCM proposed in [8]. This facilitates the computations con-
siderably as only a single variable, the joint-sparsity level K,
needs to be tuned.

The paper is organized as follows. Section 2 describes
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RDA and SVD based inversion of the used RSCM. In Sec-
tion 3, the proposed CRDA as well as our tuning parameter
selection criteria is introduced. Section 4 provides the results
on simulation studies which explore both the feature-selection
capability and misclassification errors of CRDA, and the com-
peting methods. Classification results on four real microarray
datasets are also provided. Section 5 concludes the paper.

2. REGULARIZED LDA

We are given a p-variate random vector x which we need to
classify into one of theG classes or populations. In LDA, one
assumes that the class populations are p-variate multivariate
normal (MVN) with a common positive definite symmetric
covariance matrix Σ over each class but distinct class mean
vectors µg ∈ Rp, g = 1, . . . , G. The problem is then to
classify x to one of the MVN populations, Np(µg,Σ), g =
1, . . . , G. Sometimes prior knowledge is available on propor-
tions of each population and we denote by pg , g = 1, . . . , G,
the prior probabilities of the classes (

∑G
g=1 pg = 1). LDA

use the rule (1) with discriminant function

dg(x) = x>βg −
1

2
µ>g βg + ln pg,

where βg = Σ−1µg for g = 1, . . . , G.
The LDA rule involves a set of unknown parameters, the

class mean vectors µg and the covariance matrix Σ. These
are estimated from the training dataset X = (x1 · · · xn)
that consists of ng observations from each of the classes
(g = 1, . . . , G). Let c(i) denote the class label associ-
ated with the i-th observation, so c(i) ∈ {1, . . . , G}. Then
ng =

∑n
i=1 I(c(i) = g) is the number of observations be-

longing to g-th population, and we denote by πg = ng/n the
relative sample proportions. We assume observations in the
training dataset are centered by the sample mean vectors of
the classes,

µ̂g =
∑
c(i)=g

xi. (2)

Since X is centered, the pooled (over groups) sample covari-
ance matrix (SCM) can be written simply as

S =
1

n
XX>.

In practice, an observation x is classified using an estimated
discriminant function,

d̂g(x) = x>β̂g −
1

2
µ̂>g β̂g + lnπg, (3)

where β̂g = Σ̂−1µ̂g , g = 1, . . . , G and Σ̂ is an estimator of
Σ. Note that in (3) the prior probabilities pg-s are replaced
by their estimates, πg-s. Commonly, the pooled SCM S is
used as an estimator Σ̂. Since we are in the regime, where
p � n, the pooled SCM is no longer invertible and hence

can not be used in (3). To avoid the singularity of the esti-
mated covariance matrix, a commonly used approach in the
literature (cf. [7, 8]) is to use a regularized SCM (RSCM),

Σ̂ = αS + (1− α) ηI (4)

where η = Tr(S)/p. SCRDA [1] uses an estimator Σ̂ =
αS + (1 − α)I. However, (4) has some theoretical justifica-
tion since with an appropriate (data dependent) choice α̂, the
obtained RSCM in (4) will be a consistent minimum mean
squared error (MMSE) estimator of Σ. Such choices of α
have been proposed, e.g., in [7] and in [8].

In the HD setup, the main computational burden is related
with inverting the matrix Σ̂ in (4). The inversion can be done
using the SVD-trick, as follows [1, 9]. The SVD of X is

X = UDV>,

where U ∈ Rp×m, D ∈ Rm×m, V ∈ Rn×m and m =
rank(X). Direct computation of SVD is time consuming and
the trick is that V and D can be computed first from SVD of
X>X = ṼD̃2Ṽ>, which is only an n×n matrix. Here Ṽ is
an orthogonal n×n matrix whose first m-columns are V and
D̃ is an n×n diagonal matrix whose upper left cornerm×m
matrix is D. After we compute V and D from SVD of X>X,
we may compute U from X by U = XVD−1. Then, using
the SVD representation of the SCM, S = (1/n)UD2U>, and
simple algebra, one obtains a simple formula for the inverse:

Σ̂−1 = U

[(α
n

D2 + (1− α)ηIm

)−1

− 1

(1− α)η
Im

]
U>

+
1

(1− α)η
Ip, (5)

where η = Tr(S)/p = Tr(D2)/np. This reduces the com-
plexity fromO(p3) toO(pn2) which is a significant saving in
p� n case.

3. COMPRESSIVE RDA

3.1. Proposed CRDA Approach

In order to explain the proposed compressive RDA approach,
we first write the discriminant rule in vector form as

d(x) = (d1(x), . . . , dG(x))

= x>B − 1

2
diag

(
M>B

)
+ ln p, (6)

where ln p = (ln p1, . . . , ln pG), M =
(
µ1 . . . µG

)
and

B = (β1 · · · βG) = Σ−1M. Above notation diag(·) ex-
tract the diagonal of the G × G matrix A into a vector, i.e.,
diag(A) = (a11, . . . , aGG). The discriminant function in (6)
is linear in x with coefficient matrix B ∈ Rp×G. This means
that if the i-th row of the coefficient matrix B is a zero vec-
tor 0, then it implies that i-th predictor does not contribute
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to the classification rule and hence can be eliminated. If the
coefficient matrix B is row-sparse, then the method can be
potentially used as a simultaneous feature elimination pro-
cedure. In microarray data analysis, this means that gene i
does not contribute in the classification procedure and thus
the row-sparsity of the coefficient matrix allows, at the same
time, identify differentially expressed genes.

In the MMV model [6], the goal is to achieve simultane-
ous sparse reconstruction (SSR) of the signal matrix. The task
is to estimate the K-rowsparse signal matrix B, given an ob-
served measurement matrix Y and an (over complete) basis
matrix (or dictionary) Φ. K-rowsparsity of B means that only
K rows of B contain non-zero entries. Commonly, this goal
is achieved by `q,1 mixed matrix norm minimization, where

‖B‖q,1 =

p∑
i=1

‖β[i]‖q,

for some q ≥ 1, where β[i] denotes the i-th row of B. Values
q = 1, 2,∞ have been advocated in the literature. Many SSR
algorithms use hard-thresholding operator HK(·, q), defined
as transform HK(B, q), which retains the elements of the K
rows of B that possess largest `q norm and set elements of the
other rows to zero. This leads us to define our compressive
RDA discriminant function as

d̂(x) =
(
d̂1(x), . . . , d̂G(x)

)
= x>B̂ − 1

2
diag

(
M̂>B̂

)
+ lnπ, (7)

where lnπ = (lnπ1, . . . , lnπG), M̂ =
(
µ̂1 . . . µ̂G

)
and

B̂ = HK(Σ̂−1M̂, q)

where Σ̂ has been defined in (4) and µ̂g are the sample mean
vectors of the classes in (2). Fast formula to compute Σ̂−1 is
given in (5).

Next let us draw attention to SCRDA [1] which uses Σ̂ =
αS + (1−α)I instead of estimator in (4). Another difference
is in its use of element-wise soft-shrinkage. Namely, SCRDA
can also be written in the multivariate form (7), but using

B̂ = S∆(Σ̂−1M̂) (8)

where S∆(·) is the soft-thresholding function that is applied
element-wise to its matrix-valued argument. That is, the
(i, j)-th element b̂ij of B̂ in (8) is

b̂ij = S∆(tij) = sign(tij)(|tij | −∆)+

where (t)+ = max(t, 0) for t ∈ R and tij denotes the (i, j)-
th element of T = Σ̂−1M̂. One disadvantage of SCRDA is
the shrinkage thresholding parameter ∆ ∈ [0,∞) which is the
same across all groups, and different populations would often
benefit from different shrinkage intensity. A sensible upper

Table 1. Classification results for the simulation setups I –III.
Figures in bold-face indicate the best results in each column.
For setup III, the false positive (FP) and detection rate (DR)
are also reported. Results in paranthesis are obtained using
(α̂ell, K̂CV) instead of (α̂CV, K̂CV).

Methods Setup I Setup II
TE NFS TE NFS

CRDA`1 120 (116) 165 (163) 180 (174) 105 (101)
CRDA`2 95 (94) 126 (120) 184 (182) 96 (105)
CRDA`∞ 84 (81) 112 (114) 185 (177) 94 (96)
PLDA 117 301 151 148
SCRDA 97 227 291 349
NSC 89 290 277 440

Setup III
Methods TE NFS DR FP
CRDA`1 46 (50) 205 (259) 90 (94) 12 (27)
CRDA`2 49 (46) 240 (203) 92 (92) 23 (10)
CRDA`∞ 50 (52) 238 (252) 89 (92) 27 (27)
SCRDA 108 282 69 51

bound of ∆ is difficult to determine and is highly data depen-
dent. The proposed CRDA on the other hand uses simple to
tune joint-sparsity level K ∈ {1, 2, . . . , p} and has the bene-
fit of offering simultaneous joint-sparse recovery, i.e., features
are eliminated across all groups instead of group-wise.

3.2. Model (Parameters) Selection

We employ Q-fold CV to estimate the optimal pair (α̂CV, K̂CV)
using a 2D grid of candidate values {αi}Ii=1 × {Kj}Jj=1 of
the tuning parameters, where α ∈ [0, 1) and K ∈ [1, p] =
{1, 2, . . . , p} ⊂ N. Often there are several pairs that yield
the minimal cross-validation error from the training dataset
and each pair can exhibit varying degree of sparsity (number
of features selected). Among them, we would prefer the pair
that had minimal number of features. Since a pair with mini-
mal CV error may not yield a classifier that is at the same time
sparse, one may wish to set a lower bound for the number of
features selected (NFS) in order to enhance the interpretabil-
ity of the discriminant function.

Let εCV(α,K) denote a CV error for a pair (α,K). To
have a trade-off between a minimum (CV-based) training er-
ror εCV ∈ [1, n] and NFS, we use a threshold εTH = max(0.15 ·
n, εCV) and choose only the pairs which have CV error smaller
than εTH, i.e., pairs which verify εCV(α,K) ≤ εTH. From these
pairs, the final optimal pair (α̂CV, K̂CV) is chosen as the one
that has the smallest NFS value. For finding the optimal pair,
we utilize a uniform grid of 100 K-values and a uniform grid
of 25 α-values.

We compare the CV approach to computationally much
lighter approach which uses the estimated parameter α̂ell
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Table 2. Classification results for the four microarray datasets using 5-fold CV. Note that figures in bold-face indicate the best
results. Results in parenthesis are obtained using (α̂ell, K̂CV) instead of (α̂CV, K̂CV).

Methods Ramaswamy et al. dataset Yeoh et al. dataset Sun et al. dataset Nakayama et al. dataset
TE NFS TE NFS TE NFS TE NFS

CRDA`1 10.6 (9.9) 2634 (4899) 9.6 (7.5) 2525 (4697) 12.5 (12.9) 23320 (27416) 8.3 (7.9) 2941 (6952)
CRDA`2 10.4 (10.3) 2683 (3968) 9.7 (6.0) 2273 (4659) 12.9 (13.3) 20589 (23484) 7.9 (7.6) 3142 (7755)
CRDA`∞ 10.3 (10.3) 3405 (4530) 9.3 (6.5) 846 (4697) 12.4 (13.5) 21354 (20207) 7.6 (7.6) 2719 (2340)
PLDA 18.8 5023 NA NA 15.2 21635 4.4 10479
SCRDA 24 14874 NA NA 15.7 54183 2.8 22283
NSC 16.3 2337 NA NA 15 30005 4.2 5908

given in [8]. We note that value of α̂ell can be computed
efficiently using the SVD trick. Given the optimal RSCM
based on α̂ell we then estimate the sparsity level K using CV
estimate K̂CV. This reduces the computational cost signifi-
cantly.

4. NUMERICAL EXAMPLES

The simulation study investigates the performance of CRDA
based classifiers using different simulation setups commonly
used in the RDA literature (e.g. in [1, 3, 10, 11]) and draw
a comparison with the available results, against the nearest
shrunken centroids (NSC) [2], SCRDA [1] and PLDA [3].
For simulation setups I and II, we generate 1200 observa-
tions from MVN distribution, Np(µg, Ip), with equal prob-
abilities for each of G = 4 groups. The observations are
divided into three sets: (i) the validation set with 100 ob-
servations finds the tuning parameters, (ii) then 100 obser-
vations in the training set estimate Σ̂−1 and (iii) the rest 1000
form the test set for calculating misclassification test errors
(TE). A total of T = 100 out of p = 500 features differ
between the groups. In setup I, µg contains t = 25 nonze-
ros for each group g and rest all zeros, i.e., [µg]i = 0.7 for
t(g − 1) + 1 ≤ i ≤ t(g − 1) + t . While, [µg]i = g−1

3 if
i ≤ 100 and zero otherwise for setup II. Table 1 lists the aver-
age of the TE and NFS for each classifier using 25 MC trials
and 5-fold CV.

The third simulation setup resembles real gene expression
data. We generate n = 200 training and 1000 test obser-
vations each having p = 10, 000 features. All groups have
equal probabilities and follow MVN distributionNp(µg,Σg)
for g = 1, . . . , G = 3. We have µ1 = 0p and µ2 contains all
zeros except first 200-entries (i.e., true positives) with value
1/2 and µ3 = −µ2. Each group employs following block-
diagonal auto-regressive covariance-structure

Σg = Σ(ρg) ⊕Σ(−ρg) ⊕ · · · ⊕Σ(ρg) ⊕Σ(−ρg),

where ⊕ indicates the direct sum (not the Kronecker sum) of
100 block matrices having the AR(1) covariance structure

[Σ(ρg)]1≤i,j≤100 = ρ|i−j|g

where ρg is the correlation which is different for each group,
namely, ρ1 = 0.5, ρ2 = 0.7 and ρ3 = 0.9. This setup mimics
real microarray data as genes are correlated within a pathway
and independent between the pathways. Table 1 reveals the
higher accuracy of the proposed CRDA methods compared to
SCRDA when measured by TE, NFS, detection rate (DR) and
FP rates. The results are averaged over 10 Monte-Carlo trials
using 10-fold CV.

Next we do a comparison based on real microarray
datasets. A summary of the used datasets is given below:

Dataset N p G Disease
Ramaswamy et al. [12] 190 16,063 14 Cancer
Yeoh et al. [13] 248 12,625 6 Leukemia
Sun et al. [14] 180 54,613 4 Glioma
Nakayama et al. [15] 105 22,283 10 Sarcoma

We compute the results for each dataset over 10 training-
test set splits, each with a random choice of training and test
set containing 75% and 25% of the total N observations, re-
spectively. The average results of classification and gene-
selection by CRDA methods are given in Table 2 with avail-
able comparison results. The proposed CRDA based classi-
fiers showcase better classification and feature-selection re-
sults for all simulation setups. Overall, it seems that `2 and
`∞-norm based CRDA methods are doing better as compared
to others. Moreover, the CRDA based on `∞-norm appears to
have best overall performance. Note that the proposed CRDA
classifiers outperform other methods with a significant mar-
gin in the case of Ramaswamy et al. (with 14 groups) and
Sun et al. (of p = 54, 613 genes).

5. DISCUSSIONS AND CONCLUSIONS

We proposed a modified version of LDA, called compressive
regularized discriminant CRDA, for analysis of data sets in
high dimension low sample size situations. CRDA was shown
to outperform competing methods in most of the cases. It also
had the best detection rate which illustrates that the method
can be a useful tool for accurate selection of (differentially
expressed) genes in microarray studies.
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