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ABSTRACT

In this paper we introduce a computationally efficient solution to
the problem of graph signal interpolation. Our solution is derived using
the Nyström extension and is due to the properties of the Markov
matrix which we use as our graph shift operator, inspired by diffusion
maps. We focus on graph signals that are smooth over the graph.
This assumption cements the relationship between the graph and the
graph signal. We experimentally verify our suggested framework on
the MNIST data set of handwritten digits.

Index Terms— Signal processing on graphs, Diffusion maps,
Nyström extension.

I. INTRODUCTION

The advancement of technology over the past few decades has
made vast amounts of data available from various sources such as social
networks, government agencies, commercial and academic bodies and
more. For this reason in many applications we find ourselves limited
not by the amount of data available, but by the time necessary for
processing big data.

A popular approach to data processing is to model the underlying
geometry of the data as weighted graphs. The different data elements
(data points) are modeled as nodes, while the pairwise relationships
between these elements are modeled as edges. For example, an image
may be modeled as a graph where the nodes represent the basic ele-
ments (pixels, super-pixels) while the edges reflect similarity between
these elements. This similarity can be in color, texture or some other
feature.

When modeling an image as a graph, there is no obvious definition
for the direction of an edge. For this reason images are often modeled
as undirected graphs. Undirected graphs are graphs possessing bidi-
rectional edges, as opposed to directed graphs in which the pairwise
relationships between nodes are a-symmetric. One may use a directed
graph, for example, to model citations of academic papers as a paper
may only cite previously published papers.

In recent years scientists have began to use weighted graphs in
order to process signals residing over irregular domains [1], [2], [3],
[4], [5]. There are two main categories for this signal processing. The
first category concerns undirected graphs with non-negative weights,
and uses results from spectral graph theory [1]. The second category
contains general graphs. In this case signal processing may rely upon
algebraic signal processing theory [2]. In either approach, the graph
signals are defined as a mapping from each node of the graph to some
value. In this paper we define a graph signal as a mapping that preserves
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the geometry of the graph in the sense that closely connected nodes
are mapped to similar values.

In addition to this definition, we restrict the discussion to weighted
undirected graphs with non-negative weights. This restriction allows
us to represent the graph as a Markov matrix, which is a matrix
containing transition probabilities between the nodes in the graph. This
representation is useful for two reasons. First, the eigenvalues and
eigenvectors of the Markov matrix define an embedding of the graph
in the Euclidean space. This embedding, introduced by Coifman and
Lafon [6], is called a diffusion map and has been shown to preserve the
local geometry of the graph. Thus the graph is expressed as a cloud of
points in a Euclidean space where nearby points correspond to similar
nodes. Since the graph signal maps each node of the graph to some
value, it also maps each diffusion embedding vector to this value.

Another advantage of using the Markov matrix representation is
that it is similar to a positive semi-definite (PSD) matrix called the
normalized graph Laplacian. This similarity allows to efficiently ap-
proximate the eigendecomposition of the Markov matrix. Our suggested
method of approximation is a variation on the Nyström extension [7],
[8], [9], [10] which allows to efficiently approximate the eigendecom-
position of PSD matrices.

In this paper we propose an efficient estimation of the eigende-
composition of the Markov matrix, leading to an efficient solution to
the problem of graph signal interpolation. In this problem, the graph
signal maps some subset of the nodes of the graph to known values,
and the goal is to recover the value to which the remaining nodes are
mapped.

We test our resulting efficient method of graph signal interpolation
on the application of digit recognition. Specifically, we formulate the
problem of identifying a hand written digit from an image as a graph
signal interpolation problem and show that our suggested framework
acheives high accuracy with low runtime.

This paper is organized as follows. Section II contains a summary
of the diffusion maps framework. In Section III we introduce the field
of signal processing on graphs. Section IV presents a variation on
Nyström’s extension allowing to apply it to the Markov matrix. In
addition, we derive an efficient graph signal interpolation framework.
In Section V we present experimental results of our graph signal
interpolation framework. We apply this framework to the MNIST data
set of handwritten digits [11], [12].

II. DIFFUSION MAPS

The diffusion maps framework uses a graph to represent some data
set X = {x1, . . . , xN}. For weighted graphs we denote the affinity
matrix containing edge weights as W. The ijth element of the affinity
matrix specifies the weight of an edge between node vi and node vj .
If no edge exists between these nodes, then Wi,j is set to zero.

The Markov transition matrix of a weighted undirected graph with
non-negative weights is a normalization of the affinity matrix W such
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that each row sums to 1. Mathematically, we express the Markov matrix
as

P = D−1W, (1)

where D is the diagonal matrix of node degrees

d (vi) = Di,i =

N∑
j=1

Wi,j . (2)

This normalization allows to consider the entries of the Markov matrix
to be transition probabilities between nodes of the graph.

Powers of the Markov matrix can be interpreted as transition
probabilities between nodes of the graph when allowing the transition
to occur over several steps. For example,

p2 (xi, xj) = P2
i,j =

N∑
m=1

Pi,mPm,j (3)

which is the probability of transition from node vi to node vj in two
steps. Another way to view powers of the Markov matrix is as an
expression of pairwise relationships in the graph at different scales.
The lowest scale considers only adjacent nodes, while the t-th scale
takes into consideration nodes connected by length t paths.

Coifman and Lafon [6] focus on a scale-dependent distance be-
tween nodes of a graph known as the diffusion distance. Formally, the
diffusion distance at scale t is defined as [6], [13], [14]

D2
t (i, j) = ‖pt (xi, ·)− pt (xj , ·) ‖2φ0

(4)

where φ0 is the leading left eigenvector of the Markov matrix and
pt (·, ·) are elements of Pt. It can be shown that φ0 is the stationary
distribution of the Markov chain [13],

φ0 (i) =
d (vi)∑N
l=1 d (vl)

. (5)

For simplicity, we denote

d (G) =

N∑
l=1

d (vl) .

The diffusion distance can then be expressed as

D2
t (xi, xj) =

N∑
m=1

((
Pt
)
i,m
−
(
Pt
)
j,m

)2
·
d (G)

d (vm)
. (6)

The diffusion distance expresses the connectivity of the graph. If
two nodes, vi and vj , have many short paths connecting them then
the probability of transition between them (P ti,j) will be high. This
means that the probability of each of these nodes transitioning to some
general node vm is similar, causing a low diffusion distance D2 (i, j).
On the other hand, if vi and vj are relatively disconnected, then the
probability of each node transitioning to some general node vm is
different, causing the diffusion distance to be high. In this way the
diffusion distance contains the connectivity information of the graph.

The diffusion distances at scale t are locally preserved when each
node vi of the graph is embedded in a Euclidean space by the diffusion
embedding vector

Ψt (i) =


λt2ψ2 (i)
λt3ψ3 (i)

...
λtNψN (i)

 , (7)

where ψj is the jth eigenvector of P and λj is the jth eigenvalue. This
embedding was introduced by Coifman and Lafon [6].

Keller and Gur [13] use the diffusion maps embedding (7) to solve
the sensor localization problem. They define the location of a sensor

as a function over the diffusion embedding vectors of that sensor. This
function is approximated from a small set of known sensor locations
and then applied to all diffusion embedding vectors. They named this
framework spectral regression. When a graph is represented by the
Markov matrix, we show that spectral regression can be applied to
graph signal interpolation. We discuss this problem in Section V.

III. SIGNAL PROCESSING ON GRAPHS

As in diffusion maps, in the field of signal processing on graphs
a data set is represented by a weighted graph. The pairwise (edge)
information of the graph is contained in the graph shift operator A [2].
This is a matrix where the ijth entry corresponds to the relationship
between vi and vj . If these nodes are not adjacent, then we set Ai,j =
0.

A graph signal is defined in the literature as a mapping from each
node vi to some value si [2], [3], [4], [15]. In this paper, we define
a graph signal as having an inherent connection to the graph it is
defined on. This connection should cause a manifestation of the graph
connectivity in the graph signal, leading to a slow change of the graph
signal over the edges of the graph.

An example of a graph signal can be taken from computer vision.
We construct a graph in which each node represents a basic image
element (pixel, superpixel). The edges of the graph contain information
of color similarity between adjacent image elements. The graph signal
maps each image element vi to one of two classes foreground (si = 1)
or background (si = 0). For obvious reasons, adjacent image elements
with similar color information should be mapped to the same class.
This means the graph signal must change slowly over the edges of the
graph.

The field of signal processing on graphs extends traditional signal
processing to signals defined over irregular domains represented by
graphs. For example, the time shift operation is extended to a graph
shift operation [2]. This new operation is defined as

s̃ = As. (8)

Another operation generalized for signals defined over graphs is the
Fourier transform. The Graph Fourier transform (GFT) [2] is defined
as

ŝ = V−1s (9)

where V is the matrix of eigenvectors (or generalized eigenvectors
where necessary) of the graph shift operator. The inverse graph Fourier
transform (IGFT) is

s = Vŝ. (10)

The graph shift operator is very important to the field of signal
processing on graphs. However, its definition as a weighted adjacency
matrix is not unique. In [16] we suggested defining the graph shift
operator A as the Markov matrix P. In the remainder of this paper
we refer only to the case that A = P, and provide a computationally
efficient method of computing V for our suggested definition of the
graph shift operator.

IV. NYSTRÖM EXTENSION

IV-A. Nyström Extension for Positive Semi-definite Matrices

The Nyström Extension is a method for approximating the eigen-
decomposition of PSD matrices. While the Markov matrix is not PSD,
in this section we show that the Nyström extension can be applied to
it.

First, we briefly present the extension for some PSD matrix K. This
matrix can be considered as a combination of four block matrices,

K =

[
E BT

B C

]
, (11)
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where E ∈ Rr×r , B ∈ RN−r×r , and C ∈ RN−r×N−r for some
0 < r < N . The Nyström extension [7], [8], [9], [10] is a method for
extending the eigenvectors of E to create an estimate of r eigenvectors
of K.

Since K is symmetric, the matrix E must be symmetric as well.
Thus it is diagonalizable as

E = ZQZT , (12)

where Z is the unitary matrix that contains in its columns the eigen-
vectors of E and Q is a diagonal matrix that contains the eigenvalues
of E in its main diagonal. The Nyström extension of the matrix of
eigenvectors of K is given by [7]

Z̃ =

[
Z

BZQ−1

]
. (13)

The diagonal of the matrix Q is the approximation of the eigenvalues
of K.

IV-B. Tailoring Nyström Extension to the Markov Matrix

It is important to note that the Markov matrix P is not PSD.
The eigenvalues of P range from −1 to 1, and P is not even
symmetric. However, the Markov matrix is similar to the normalized
graph Laplacian

L = D−
1
2 (D−W)D−

1
2 = IN −D−

1
2 WD−

1
2 (14)

which is PSD. It is easy to show that the relationship between the
eigenvectors of the Markov matrix ψi and the eigenvectors of the graph
Laplacian ψ̂i are given by

ψi = D−
1
2 ψ̂i. (15)

The eigenvalues of the Markov matrix λi are related to the eigenvalues
of the graph Laplacian λ̂i as

λi = 1− λ̂i. (16)

Since the Laplacian is a PSD matrix the Nyström extension can be
preformed on the graph Laplacian L. The simple connection between
the eigendecomposition of the Laplacian and the Markov matrix allows
us to use the Nyström extension on the Markov matrix. This is done
in two steps. The first step is to compute the eigendecomposition of
the Laplacian (Z̃, Q). The second step is to convert these matrices to
the eigendecomposition of the Markov matrix via (15) and (16).

In other words, when the graph shift operator is the Markov matrix,
the Nyström extension can be used for estimation of the GFT. In turn,
as we will now show, a small variation on the Nyström extension will
allow us to solve the problem of graph signal interpolation efficiently.

In the graph signal interpolation problem, we assume the graph
signal at a set of indices R ∈ {1, . . . , N}r is known. The goal is to
estimate the remaining N − r entries. We examine the GFT of s using
the approximated eigenvectors of the graph shift

s = Vx. (17)

The vector x contains the frequencies of the graph signal s.

For convenience, we assign indices to nodes so as to ensure that
R = {1, . . . , r}. This is possible since the indices of nodes are assigned
arbitrarily. A change of indices is no more than a permutation of rows
and columns in the graph shift operator. Under this definition, the
Nyström extension becomes

s = D−
1
2

[
Z

BZQ−1

]
x. (18)

One issue with this procedure is that the term Q−1 in (18) is
a division by eigenvalues. The eigenvalues of the normalized graph

Laplacian are known to be bounded between 0 and 2. Thus, due to
the devision by eigenvalues, there may be numerical instabilities. This
may cause some of the eigenvectors to have very large values in the
(r + 1) , . . . , N coordinates. We thus suggest to change the extension
as follows:

Z̃ =

[
Z
BZ

]
. (19)

We note that we could not omit the division by eigenvalues in (19)
if we were attempting to find a rank r approximation of the Markov
matrix. However, in our case this omission will cause the graph signal
to be approximated by

s = D−
1
2

[
Z
BZ

]
x. (20)

The matrix D−
1
2 can be defined as the following block matrix,

D =

[
De 0
0 Db

]
, (21)

where De is of size r× r and Db is of size N − r×N − r. It follows
that

s = D−
1
2

[
Z
BZ

]
x =

[
D
− 1

2
e Zx

D
− 1

2
b BD

1
2
e D
− 1

2
e Zx

]
=

[
sR

D
− 1

2
b BD

1
2
e sR

]
,

(22)
which enforces the smoothness of the graph signal. Strongly connected
nodes will be mapped to similar values, while the known entries of the
graph signal are adhered to as well.

In addition to solving the problem of numerical instability while
enforcing the smoothness of the graph signal, the variation (19) on the
Nyström extension also provides a simple closed form expression for
the interpolation of smooth graph signals.

V. EXPERIMENTAL RESULTS
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Fig. 1. Graph signal interpolation on the MNIST data set. Results for
the Nyström based method are presented in blue. Results of Spectral
Regression are presented in red. (a) size of training set (r) vs. rate of
accurate graph signal reconstruction. (b) size of training set (r) vs. total
time for graph signal reconstruction.

The MNIST data set consists of a training set of 60000 images of
handwritten digits, and a test set of 10000 such images. The goal is to
determine for each image in the test set the digit it depicts.

This problem can be formulated as a graph signal interpolation
problem. We build a weighted graph wherein each image is represented
by a single node. As suggested in [4], the edge weights are calculated
according to the Euclidean distances between vectorizations of each
two images xi and xj . We build a matrix of distances F, where Fi,j
contains the distance between image xi and image xj . For each row
n in F we keep only the 200 smallest entries, and ignore the rest. The
set of indices of entries kept from row n is denoted asMn. We follow
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the practice suggested in [4], and set the similarity between each two
images to be

Wi,j =


Fi,j ·700002∑N

n=1

∑
m∈Mn

Fn,m
for j ∈Mi

0 for j /∈Mi

. (23)

We then symmetrize this matrix

Wi,j = max (Wi,j ,Wj,i) . (24)

Now that the graph is defined, we turn to define the graph signal.
Each image in the data set depicts one of ten digits. We define ten
graph signals s0, . . . , s9. Each graph signal contains

ski =

{
1 if vi represents an image of the digit k,
0 otherwise.

(25)

The graph signals s0, . . . , s9 are known over a set of r randomly
chosen (sampled) nodes from the training set. We vary r from 50 to
3000 and use (22) to recover the vectors s0, . . . , s9 for the test set. If
|ski | > |smi | for all k 6= m, then we say that node vi represents an
image of digit k.

Figure 1 presents the accuracy and runtime of the graph signal
interpolation framework presented in Section IV.

We compare the results of our variation on the Nyström extension
to results from the Spectral regression framework [13], [16]. In this
framework, the graph signal interpolation is done through an optimiza-
tion problem. As most of the graph geometry is contained in the leading
eigenvectors of the Markov matrix [16], spectral regression searches
for a band limited x that complies with the known entries of the graph
signal, i.e.

x = arg min
x∗
‖x∗‖0 such that sR = VRx∗, (26)

where for vector or matrix l, lR denotes the rows of l whose indices
are in the set R. The graph signal is then interpolated via (17).

As the eigenvectors are now calculated exactly, it is prohibitive in
both memory consumption and runtime to calculate the eigenvectors
of the 70000× 70000 Markov matrix. Instead, we sample the Markov
matrix, creating a sub-matrix containing the set of r randomly chosen
(sampled) nodes from the training set and the 10000 nodes of the test
set. In addition, we only compute 20 eigenvectors of this sub-matrix for
each value of r. This is done in order to make runtimes comparable.
The optimization problem (26) is solved using the SPGL1 package1

[17], [18].

A comparison of accuracy and runtime of the interpolations is
presented in Figure 1. We note that in the Nyström-based interpolation,
as the size of the training set (r) grows, the complexity of calculating
(12) increases. In the Spectral Regression interpolation framework, as
the size of the training set (r) grows so does the size of the graph shift.
However, the number of calculated eigenvectors remains unchanged.
Thus, when r = 2600 runtime for both frameworks is approximately
equal. In addition, at this value of r, the results of the Nyström-based
interpolation are more accurate due to the limitation imposed on the
number of eigenvalues computed in the Spectral Regression framework.
In order to achieve comparable accuracy, the number of eigenvectors
computed would need to be increased, causing an increase in runtime
as well. Our variation on the Nyström extension performs faster while
still achieving good accuracy.

1https://github.com/mpf/spgl1.

VI. CONCLUSION

The field of signal processing on graphs is a relatively new area of
study. Signal processing on graphs strives to generalize definitions and
operations from signal processing to data represented by a graph. An
important definition in this field is the graph shift operator. In this paper
we show that when defining the graph shift operator to be the Markov
matrix, the framework of signal processing on graphs is strongly related
to the diffusion map framework. We then present a computationally
efficient solution to graph signal interpolation problem based on our
suggested definition for the graph shift operator.
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