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ABSTRACT

The goal of this paper is to derive a small perturbation anal-
ysis for networks subject to random changes of a small num-
ber of edges. Small perturbation theory allows us to derive,
albeit approximate, closed form expressions that make possi-
ble the theoretical statistical characterization of the network
topology changes. The analysis is instrumental to formulate a
graph-based optimization algorithm, which is robust against
edge failures. In particular, we focus on the optimal allocation
of the overall transmit powers in wireless communication net-
works subject to fading, aimed at minimizing the variation of
the network connectivity, subject to a constraint on the overall
power necessary to maintain network connectivity.

Index Terms— Graph topologies, network reliability, in-
formation flow, small perturbation analysis

1. INTRODUCTION

Graph theory is a powerful mathematical tool to extract
macroscopic properties of interconnected entities. In some
cases, like sensor, communication and transportation net-
works, there exists a physical link (edge) between pairs of
vertices. In other cases, the data are represented as points in
a high-dimensional space and edges are associated to pairs
of points to reflect their similarity. These representations
form the basis of many graph-based unsupervised or semi-
supervised machine learning techniques. In several cases,
the presence of an edge between a pair of nodes is subject
to random changes. In a wireless communication system,
for instance, it is typical to have random link failures due to
fading. Similarly, in a point cloud, the association of an edge
to a pair of points can also be a random event, because of
imperfect information in the rule used to decide whether to
establish an edge or not. The goal of this paper is to assess
the effect of random changes on a limited number of edges on
macroscopic network parameters, such as, for example, con-
nectivity. We build our study on a small perturbation analysis
of the eigendecomposition of the Laplacian matrix describing
the graph. An outcome of our analysis is the identification
of the most critical links, i.e. those links whose failure has
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a major impact on some network macroscopic features, such
as connectivity. A nearby research field is network reliability,
[1], [2], [3], and [4], assessing the sensitivity of the network
to random link failures. In particular, if a failure probabil-
ity is associated to every edge, the all-terminal reliability is
the probability that the entire graph is connected, while the
K-terminal probability is the probability that subset of K
nodes are connected by one or more paths [1]. In [4], for
example, it was proposed a method to solve a network reli-
ability optimization problem, where reliability and cost are,
respectively, the objective function to be maximized and the
constraint. Eubank et al. in [2] focused on the infectious
disease outbreaks over complex networks. In such a case,
the reliability is used to characterize the criticalities of the
network and to identify the set of edge or vertices whose
deletions mostly affects the disease diffusion. In our work,
we also associate a parameter of importance (criticality) to
every edge. This parameter is expressed in closed form by us-
ing a small perturbation analysis [5] of the Laplacian matrix
eigen-decomposition, valid when the percentage of perturbed
(either added or deleted) edges is small. There are recent
works that apply matrix perturbation theory to spectral clus-
tering, such as [6], [7], [8], [9], and [10]. In particular, Von
Luxburg in [6] used perturbation theory to analyze clustering,
evaluating the distance between the eigenspace spanned by
sets of Laplacian eigenvectors of a nominal graph and the
corresponding eigenspace of a perturbed Laplacian. Spiel-
man in [11] recalled the basics of matrix perturbation theory
to analyze spectral partitioning heuristics on random graphs
that are generated to have good partitions.
The goal of our paper is threefold: i) we introduce a new
measure of edge centrality based on perturbation analysis;
ii) we provide a statistical analysis of network macroscopic
parameters such as connectivity, due to random link failure
using a small perturbation analysis of the Laplacian eigen-
decomposition; iii) we provide an optimal wireless network
resource allocation where we minimize the expected pertur-
bation of the algebraic connectivity subject to a constraint on
the overall cost (power) needed to maintaining the links, in
the presence of fading.

4194978-1-5386-4658-8/18/$31.00 ©2018 IEEE ICASSP 2018



2. STATISTICAL ANALYSIS OF CONNECTIVITY
BASED ON SMALL PERTURBATION

In this section, we briefly introduce the mathematical tools
of graph-based methods and we provide a small perturba-
tion analysis of the Laplacian eigendecomposition. The
analysis is valid in cases where only a few percentage of
edges is perturbed. Then, we derive a statistical analysis
of the algebraic connectivity of a network subject to ran-
dom edge perturbation. A small perturbation analysis of
the eigen-decomposition of a matrix is a classical problem
that has been studied for a long time, see, e.g. [5], [12].
In this paper we focus on the small perturbation analysis of
the eigendecomposition of a perturbed Laplacian L + δL,
incorporating an original graph Laplacian L plus the addi-
tion or deletion of a small percentage of edges. We denote
by λ̃i = λi + ∆λi the perturbed i-th eigenvalue and by
ũi = ui + ∆ui the associated perturbed eigenvector. If only
one edge fails, say edge m, the perturbation matrix can be
written as δL(m) = −amaTm, where am = [am1

· · · amn ]T

has all entries equal to zero, except the two am(im) = 1 and
am(fm) = −1, where im and fm are the initial and final
vertices of the failing edge. In case of addition of a new
edge, the perturbation matrix is simply the opposite of the
previous expression, i.e. δL(m) = amaTm. It is straight-
forward to see that the perturbation of the Laplacian matrix
due to the simultaneous deletion of a small set of edges is
simply δL = −

∑
m∈Ep amaTm where Ep denotes the set of

perturbed edges. In the case where all eigenvalues are distinct
and the perturbation affects a few percentage of links, the
perturbed eigenvalues and eigenvectors λ̃i and ũi are related
to the unperturbed values λi and ui by the following formulas
[5]:

λ̃i ' λi + uTi δLui (1)

ũi ' ui +
∑
j 6=i

uTj δLui

λi − λj
uj . (2)

Hence, the perturbations ∆λi(m) of the i-th eigenvalue and
that of the associated eigenvector ∆ui(m), caused by the
deletion of edge m ∈ E , are:

∆λi(m) = uTi δL(m)ui = −uTi amaTmui (3)

= −||aTmui||2 = −[ui(fm)− ui(im)]2;

∆ui(m) =
∑
j 6=i

uTj δL(m)ui

λi − λj
uj = −

∑
j 6=i

uTj amaTmui

λi − λj
uj

(4)

=
∑
j 6=i

[uj(im)− uj(fm)][ui(fm)− ui(im)]

λi − λj
uj .

Within the limits of validity of first order perturbation anal-
ysis, the overall perturbation resulting from the deletion of

multiple edges in a set Ep of perturbed edges is the sum of all
the perturbations occurring on single edges:

∆λi =
∑
m∈Ep

∆λi(m). (5)

In their simplicity, the above formulas capture some of the
most relevant aspects of perturbation and their relation to
graph topology. In fact, it is known from spectral graph the-
ory, see e.g., [6], that the entries of the Laplacian eigenvectors
associated to the smallest eigenvalues tend to be smooth and
assume the same sign over vertices within a cluster, while
they can vary arbitrarily across different clusters. Taking into
account these properties, the above perturbation formulas
(1)-(4) can be interpreted as follows:

1. the edges whose deletion causes the largest perturba-
tion are inter-cluster edges;

2. given a connected graph, the eigenvector associated to
the null eigenvalue does not induce any perturbation
on any other eigenvalue/eigenvector, because it is con-
stant;

3. eigenvectors associated to eigenvalues very close to
nearby eigenvalues typically suffer larger perturbations
(recall that formulas (1) and (2) hold true only for
distinct eigenvalues).

We provide now a simple statistical analysis of the eigenvalue
perturbation, valid in case of deletion of a generic edge m,
which is modeled as a random event occurring with probabil-
ity P(m). Denoting by Zm a binary random variable that as-
sumes value 0, with probability 1−P(m), or 1, with probabil-
ity P(m), the absolute value of the perturbation of eigenvalue
λi is approximately (within the validity of small perturbation
theory):

Y (i) := |∆λi| =
M∑
m=1

Zm|∆λi(m)|, (6)

with ∆λi(m) defined as in (3). Since we use small perturba-
tion analysis, the validity of (6) holds when the probabilities
P(m) are sufficiently small. How small, it depends on the
number of edges in the graph. As a rule of thumb, if M is
the number of edges, P(m) should not be much larger than
1/M , so that the number of perturbed edges is small. Assum-
ing that the events associated to the deletion of different edges
are statistically independent, it is easy to derive the statistical
properties of the eigenvalues’ perturbations. In particular, ex-
pected value and variance of Y (i) are:

mY (i) := E{Y (i)} =

M∑
m=1

Pm|∆λi(m)| (7)

and

var{Y (i)} =

M∑
m=1

(1− Pm)Pm|∆λi(m)|2 (8)

4195



Furthermore, we can derive a bound on the probability that
the random variable Y (i) does not deviate from its expected
value more than a given value t. This probability can be upper
bounded using Hoeffding’s bound [13], which enables us to
write

P{Y (i) −mY (i) ≥ t} ≤ e−2t2/
∑M
m=1 |∆λi(m)|2 . (9)

In particular, the probability that the eigenvalue perturbation
be larger than a certain percentage α ∈ [0, 1] of the true eigen-
value λi, is upper bounded by

P{Y (i) ≥ αλi} = P{Y (i) −mY (i) ≥ αλi −mY (i)}

≤ e−2(αλi−mY (i) )2/
∑M
m=1 |∆λi(m)|2 . (10)

3. A NEW MEASURE OF EDGE CENTRALITY

Based on the above derivations, we propose a new measure
of edge centrality, which we call perturbation centrality. If
the cluster is composed of K clusters, we define the topology
perturbation centrality of edge m as follows:

pK(m) :=

K∑
i=2

|∆λi(m)| (11)

where ∆λi(m) is defined as in (3). The summation starts
from i = 2 simply because, from (1), the perturbation in-
duced by the deletion of any edge on the smallest eigenvalue
is null. The above parameter pK(m) assigns to each edge
the perturbation that its deletion causes to the overall network
connectivity, measured as the sum of the K smallest eigen-
values of the Laplacian matrix [6]. This parameter is particu-
larly relevant in case of modular graphs, i.e. graphs evidenc-
ing the presence of clusters. In such a case, it is well known
from spectral clustering theory [6] that the smallest eigenval-
ues of the Laplacian carry information about the number of
clusters in a graph. In Fig.1 we report an example of modu-
lar graph, obtained by connecting two clusters through a few
edges. The perturbation centrality is encoded in the color in-
tensity of each edge. It is interesting to see that the edges with
the darkest color are, as expected, the inter-cluster edges.

4. APPLICATION: ROBUST INFORMATION
TRANSMISSION OVER WIRELESS NETWORKS

Now we apply our statistical analysis to optimize the resource
(power) allocation over a wireless network in order to make
the network robust against random link failures. We consider
a wireless communication network where the links are subject
to random failure because of fading. Every edge is character-
ized by an outage probability Pout(m),m = 1, . . . ,M . We
suppose the failure events over different links to be indepen-
dent of each other. We consider first a single-input-single-
output (SISO) Rayleigh flat fading channel for each link. In

Fig. 1: Example of perturbation centrality measure .

such a case, the channel coefficient h is a complex Gaussian
random variable (rv) with zero mean and circularly symmet-
ric. Hence, the random variable α = |h|2 has an exponential
distribution. Denoting by Fn(x;λ) the cumulative distribu-
tion function (CDF) of a gamma random variable of order
n, with parameter λ, the CDF of α can then be written as
F1(α, λ). We also denote with C = log2(1 + |h|2ρ) the link
capacity (in bits/sec/Hz), where ρ = PT (m)

σ2
nr

2
m

is the signal-to-
noise ratio (SNR), PT (m) is the transmitted power over the
m-th link, σ2

n is the noise variance, and rm the distance cov-
ered by link m. Denoting by R the data rate, the outage prob-
ability Pout(m) is defined as:

Pout(m) = Pr{C < R} = (12)

Pr{log2(1 + |h|2ρ) < R} = Pr{|h|2 < 2R − 1

ρ
} =

ˆ 2R−1
ρ

0

λe−λαdα = F1

(
2R − 1

ρ
, λ

)
= 1− e−

λ
ρ (2R−1)

This expression can be inverted to derive the transmit power
PT (m) as a function of the outage probability:

PT (m) = − λσ2
nr

2
m(2R − 1)

log(1− Pout(m))
=

σ2
nr

2
m(2R − 1)

F−1
1 (Pout(m);λ)

. (13)

The small perturbation statistical analysis derived in Section
2 is instrumental now to formulate a robust network optimiza-
tion problem. We assess the network robustness, in terms of
connectivity, as the ability of the network connectivity to be
slightly affected by the failure of a small number of edges.
The network connectivity is measured by the second small-
est eigenvalue of the Laplacian, also known as the graph al-
gebraic connectivity. This parameter is known to provide a
bound for the graph conductance [14]. Our goal is to evalu-
ate the transmit powers PT (m), or equivalently, through (13),
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the outage probabilities, that minimize the average perturba-
tion of the algebraic connectivity, subject to a cost associated
to the total transmit power PTmax necessary to establish all
the links. In formulas, we wish to solve the following opti-
mization problem:

min
Pout

∑
m∈E

E{|∆λ2(m)|}

s.t
∑
m∈E

PT (m) ≤ PTmax
Pout(m) ∈ [0, 1],∀m ∈ E .

(14)

Using equations (7) and (3), we can rewrite the optimization
problem in terms of the outage probabilities Pout(m) as:

min
Pout

∑
m∈E

Pout(m)[u2(im)− u2(fm)]2

s.t.
∑
m∈E

r2m
F−1

1 (Pout(m);λ)
≤ Cmax

Pout(m) ∈ [0, 1], ∀m ∈ E

(15)

where we set Cmax =
PTmax

σ2
n(2R−1)

.
Problem (15) is non-convex because the constraint set is
not convex. If we perform the change of variable tm :=
1/F−1

1 (Pout(m);λ) = −λ/log(1−Pout(m)),m = 1, . . . ,M ,
the constraint becomes linear and the objective function
F1( 1

tm
;λ)|∆λ2(m)| =

∑
m∈E

(1 − e−
λ
tm )|∆λ2(m)| becomes

non-convex. However, if we limit the variability of the un-
known variables to the set tm ≥ λ/2,∀m, the objective
function becomes convex, so that the original problem con-
verts into the following convex problem:

min
t

∑
m∈E

(1− e−
λ
tm )|∆λ2(m)|

s.t.
∑
m∈E

r2
mtm ≤ Cmax

tm ≥ λ
2 , ∀m ∈ E .

(16)

We can now generalize the previous formulation to the Multi-
Input Multi-Output (MIMO) case, assuming multiple inde-
pendent Rayleigh fading channels. A fundamental property
of MIMO systems is the diversity gain, which makes them
more robust against fading with respect to SISO systems. In
a MIMO channel with nT transmit and nR receive anten-
nas, if the n = nT × nR channels are statistically indepen-
dent, denoting by hij the coefficient between the i-th transmit
and the j-th receive antenna, the pdf of the random variable
α :=

∑nT
i=1

∑nR
j=1 |hij |2 is the Gamma distribution [15]:

PA(α) =
λn

(n− 1)!
αn−1e−λα. (17)

Proceeding similarly to the SISO case, the optimization prob-
lem can be formulated as

min
t

∑
m∈E

Fn( 1
tm

;λ)|∆λ2(m)|

s.t.
∑
m∈E

r2
mtm ≤ Cmax

tm ≥ λ/(n+ 1), ∀m ∈ E

(18)
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Fig. 2: Comparisons between SISO (red curves) and MIMO (n = 4)
systems (blue curves), with and without optimization.

where the constraint on the variables tm has been introduced
to make the problem convex. Indeed problem (16) is a spe-
cial case of problem (18), when n = 1 and for b = 1/λ. An
interesting result about the convexity of problem (18) is that
the bounding region increases with the number of indepen-
dent channels.
As a numerical example, we considered a connected network
composed by two clusters, with a total of |E| = 1612 edges
and two bridge edges between the two clusters. For the sake
of simplicity, we assumed the same distances rm over all
links. In Fig. 2, we compare the expected perturbations of
the algebraic connectivity, normalized to the nominal value
λ2, obtained using our optimization procedure or using the
same power over all links, assuming the same overall power
consumption. We report the result for both SISO and MIMO
cases. From Fig. 2, we can observe a significant gain in terms
of the total power necessary to achieve the same expected per-
turbation of the network algebraic connectivity. We can also
see the advantage of using MIMO communications, at least
in the case of statistically independent links.

5. CONCLUSIONS

In this paper we have shown how a small perturbation analy-
sis of the graph Laplacian matrix can be beneficial to under-
stand the effect of a few edge failures on the overall network
connectivity. The closed form expressions resulting from this
analysis enabled us to introduce a new edge centrality mea-
sure useful to assess how the failure of each edge affects the
connectivity properties of the overall network. Furthermore,
we used this analysis to formulate an optimal power alloca-
tion strategy over wireless communication networks, aimed
to gain robustness against random link failures.

4197



6. REFERENCES

[1] K. S. Tittmann P., Graph-Based Modelling in Engineer-
ing. Switzerland: Springer, Cham, 2017, ch. Structural
Importance and Local Importance in Network Reliabil-
ity.

[2] S. Eubank, M. Youssef, and Y. Khorramzadeh, “Using
the network reliability polynomial to characterize and
design networks,” Journal of complex networks 2.4, p.
356372, September 2014.

[3] F. Beichelt and P. Tittmann, Reliability and Mainte-
nance: Networks and Systems. Taylor & Francis,
2012.

[4] R. Dash, N. Barpanda, P. Tripathy, and C. Tripathy,
“Network reliability optimization problem of inter-
connection network under node-edge failure model,”
Applied Soft Computing, vol. 12, no. 8, pp. 2322 –
2328, 2012.

[5] J. H. Wilkinson, The Algebraic Eigenvalue Problem.
New York, NY, USA: Oxford University Press, Inc.,
1988.

[6] U. von Luxburg, “A tutorial on spectral clustering,”
Statistics and Computing, vol. 17, no. 4, pp. 395–416,
Dec 2007.

[7] S. Borjigin and C. Guo, “Perturbation analysis for
the normalized laplacian matrices in the multiway
spectral clustering method,” Science China Information
Sciences, vol. 57, no. 11, pp. 1–17, Nov 2014.

[8] Z. Tian, X. Li, and Y. Ju, “Spectral clustering based on
matrix perturbation theory,” Science in China Series F:
Information Sciences, vol. 50, no. 1, pp. 63–81, 2007.

[9] L. Huang, D. Yan, N. Taft, and M. I. Jordan, “Spectral
clustering with perturbed data,” in Advances in Neural
Information Processing Systems, 2009, pp. 705–712.

[10] A. J. Savol and C. S. Chennubhotla, “Approximating
frustration scores in complex networks via perturbed
laplacian spectra,” Phys Rev E Stat Nonlin Soft Matter
Phys, vol. 92, no. 0, pp. 062 806–062 806, Dec 2015.

[11] D. A. Spielman, “Spectral graph theory and its appli-
cations,” in Foundations of Computer Science, 2007.
FOCS’07. 48th Annual IEEE Symposium on. IEEE,
2007, pp. 29–38.

[12] G. Stewart, Introduction to matrix computations, ser.
Computer science and applied mathematics. Academic
Press, 1973.

[13] W. Hoeffding, “Probability inequalities for sums of
bounded random variables,” Journal of the American
statistical association, vol. 58, no. 301, pp. 13–30, 1963.

[14] M. Newman, Networks: An Introduction. New York,
NY, USA: Oxford University Press, Inc., 2010.

[15] S. Barbarossa, Multiantenna Wireless Communication
Systems, ser. Mobile Communications Series. Artech
House, 2003.

4198


