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ABSTRACT

This paper generalizes the classical joint problem of signal demix-
ing and blind deconvolution to the realm of graphs. We investigate
a setup where a single observation formed by the sum of multiple
graph signals is available. The main assumption is that each individ-
ual signal is generated by an originally sparse input diffused through
the graph via the application of a graph filter. In this context, we
address the related problems of: 1) separating the individual graph
signals, 2) identifying the unknown input supports, and 3) estimat-
ing the coefficients of the diffusing graph filters. We first consider
the case where each signal – prior to mixing – is diffused in a differ-
ent graph. We then particularize the results for the more challenging
case where all the signals are diffused in the same graph. The corre-
sponding demixing and blind graph-signal deconvolution problems
are formulated, convex relaxations are presented, and recovery con-
ditions are discussed. Numerical experiments in both the single and
multiple graph cases show the capabilities of demixing in synthetic
and biology-inspired graphs.

Index Terms— Blind signal reconstruction, blind system iden-
tification, demixing, graph signal processing, source separation.

1. INTRODUCTION

In many contemporary applications, the signals of interest are de-
fined on irregular domains that can be conveniently represented by
graphs. Depending on the particular setup, the graph may corre-
spond to an actual (electrical, biological, social) network where the
signal is observed, or encode (pairwise) statistical relationships be-
tween the signal values. Under the assumption that the signal prop-
erties are related to the topology of the associated graph, the goal of
graph signal processing (GSP) is to develop algorithms that fruit-
fully leverage this relational structure [1]. Examples of relevant
problems that have been recently addressed using GSP tools include
signal reconstruction [2–5], modeling and inference of diffusion pro-
cesses [6, 7], and topology identification [8, 9], to name a few.
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In this paper we investigate how to generalize classical demixing
and blind sparse deconvolution to graph signals. Formally, consider
a graph withN nodes, and suppose that the observed signal y ∈ RN
adheres to the model y =

∑P
p=1 yp with yp = Hpxp. Each yp

represents a diffused graph signal generated by the application of a
graph filter Hp ∈ RN×N to a sparse input xp ∈ RN with unknown
support. For this model, our aim is to solve the following prob-
lem: Given the topology of the graphs, the observed signal y and
side information on the inputs and the graph filters, find {xp}Pp=1

and {Hp}Pp=1. Since graph filters implement local diffusion dynam-
ics [7, 10], this model is of practical interest in applications such as
opinion formation and source identification in social networks, in-
verse problems of biological signals supported on graphs, and mod-
eling and estimation of diffusion processes in multi-agent networks.
Signals adhering to this generative model will be referred to as dif-
fused sparse signals [11].

Contributions and related works. In Sec. 2 we investigate the gen-
eral case where each signal has been generated via a diffusion in a
different (possibly related) graph. Then, in Sec. 3 we look at the
particular setup where all the signals are diffused in the same graph.
For the latter case, separability becomes more challenging, and addi-
tional assumptions on {xp}Pp=1 and {Hp}Pp=1 are required to guar-
antee recovery. In both sections, we formulate the joint demix-
ing and blind deconvolution (non-convex) problem, propose suitable
convex relaxations, and discuss recoverability. Blind reconstruction
of graph signals lying on subspaces has been analyzed in [4, 12]
for graph bandlimited signals (sparse in the frequency domain) and
in [11] for graph diffused signals (sparse in the node domain). Blind
deconvolution of graph signals has been studied in [10, 11] under
the assumption that each observation corresponds to a single dif-
fused signal. Here, we look at the more challenging problem where
{yp}Pp=1 are not known and only y =

∑P
p=1 yp is observed. Fi-

nally, for observations adhering to a classical convolution model,
demixing and blind deconvolution have been recently studied in [13]
(for non-sparse inputs) and in [14] (for sparse inputs). Our contribu-
tion in this case is on the consideration of graph signals and filters
–which modify the definition of convolution–, as well as the inclu-
sion of the setting with multiple generating graphs.

1.1. Fundamentals of graph signal processing

This section reviews preliminary GSP concepts that will be used in
our problem formulation. To facilitate exposition, in this section we
assume that P = 1 so that the subscript p can be dropped. Addi-
tional details on GSP can be found in, e.g., [1, 15]. Consider the
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directed graph G = (N , E) formed by the setN of N nodes and the
set of links E , such that the pair (i, j) belongs to E if there exists a
link from node i to node j. Associated with a given G, a graph sig-
nal can be represented as a vector x = [x1, . . . , xN ]T ∈ RN , where
the ith component, xi, represents the signal value at node i. The
network structure is captured by the graph shift operator S [8, 16],
a sparse matrix with non-zero values if (i, j) ∈ E or i = j, that is,
[S]ji 6= 0 for (i, j) ∈ E or i = j. The adjacency matrix [8, 16]
and the graph Laplacian [1] are usual choices for the shift operator.
Assuming that S is diagonalizable, the shift can be decomposed as
S = Vdiag(λ)V−1, where λ = [λ1, . . . , λN ]T collects the eigen-
values. Linear graph filters are defined as graph-signal operators of
the form H =

∑L−1
l=0 hlS

l, i.e., polynomials in S [16]. The filtering
operation is thus given by y = Hx, where y is the filtered signal, x
the input, h = [h0, . . . , hL−1]

T the filter coefficients, and L− 1 the
filter degree.
Frequency interpretation. As in classical SP, graph filters and sig-
nals may be represented in the frequency (or Fourier) domain. Defin-
ing the graph Fourier operator as U = V−1, the graph Fourier trans-
form (GFT) of the signal x is x̃ = Ux. For graph filters, the defi-
nition of the GFT that maps the filter coefficients h to the frequency
response of the filter, h̃, is given by h̃ = Ψh, where Ψ is a N × L
Vandermonde matrix whose elements are [Ψ]i,j = λj−1

i [7]. Note
that while in classical signal processing both Fourier transforms are
the same, here U 6= Ψ. With ◦ denoting the Hadamard (element-
wise) product, the definitions of the GFT for signals and filters al-
low us to rewrite the filtering operation in the spectral domain as
ỹ = h̃ ◦ x̃. Finally, let � denote the Khatri-Rao (or columnwise
Kronecker) product and vec(·) the vectorization operator that stacks
the columns of the matrix input. Then, for the purpose of joint in-
put and filter identification, the dependence of y on x and h can be
alternatively written as [10]

y = V(ΨT �UT )T vec(xhT ). (1)

1.2. Mixtures of diffused sparse signals

This paper considers an observation y formed as the sum of P sig-
nals {yp}Pp=1, each of them generated as yp = Hpxp, with Hp =∑Lp−1

l=0 hp,lS
l
p and xp having at most Qp non-zero entries. Math-

ematically, this means that signal yp belongs to a subspace of di-
mension (at most) Qp spanned by a subset of the columns of Hp.
The particular subspace depends on the network topology encoded
in Sp, the filter coefficients hp = [hp,0, ..., hp,Lp−1]

T , and the sup-
port of xp.

To see why this model bears practical relevance, note that graph
filters can be used to represent linear diffusion dynamics that depend
on the network topology [7, 10, 11]. Potential applications range
from social networks where a rumor originated by a small group
of people is spread across the network via local opinion exchanges,
to brain networks where an epileptic seizure emanating from few
regions is later diffused across the entire brain.

2. DEMIXING WITH MULTIPLE DIFFUSING GRAPHS

Given an observation y =
∑P
p=1 yp, we aim at identifying the P in-

dividual signals under the assumption that each of them can be mod-
eled as a graph-diffused sparse input [cf. (1)] with unknown support.
With Ψp, Vp and Up denoting the corresponding matrices associ-
ated with the graph shift Sp, and leveraging the results presented

in the previous sections, the joint demixing and blind deconvolution
problem can be written as

{x̂p, ĥp, ŷp}Pp=1 = find {xp,hp,yp}Pp=1 (2a)

s. to yp = Vp

(
ΨT
p �UT

p

)T
vec(xph

T
p ) (2b)

y =
∑P
p=1yp, ‖xp‖0 ≤ Qp. (2c)

When solving (2), the observation y as well as the matrices Ψp, Vp,
and Up, and the parameters Qp are assumed to be known. To han-
dle the above demixing problem, note first that the constraint (2b)
implies that signals yp can be viewed as dummy variables fully de-
termined by xp and hp. Although this reduces considerably the size
of the feasible set, the optimization is challenging for a number of
reasons. Firstly, even if the support of the inputs were known, for
the problem to be well-posed, the number of non-trivial unknowns∑P
p=1(Qp + Lp) needs to be less than the number of observations

N . Secondly, each of the terms xph
T
p is bilinear, which introduces a

source of non-convexity and gives rise to an inherent scaling ambi-
guity. Thirdly, the presence of the `0 norm renders the optimization
NP-hard.

The first step to design a tractable relaxation of (2), is to lift
the problem by defining the N × Lp rank-one matrices Zp =
xph

T
p , together with the N × NLp transfer matrices Mp =

Vp

(
ΨT
p �UT

p

)T
. With these notational conventions, and com-

bining the linear constraints in (2b)-(2c) into a single one, the
demixing problem can be equivalently written as

{Ẑp}Pp=1 = find {Zp}Pp=1 (3)

s. to y =
∑P
p=1Mpvec(Zp) , rank(Zp) = 1, ‖Zp‖2,0 ≤ Qp.

Note that ‖Zp‖2,0, defined as the number of non-zero rows of Zp,
performs the role of ‖xp‖0 in (2). The vectors x̂p and ĥp are given
by the scaled versions of the right and left principal singular vec-
tors of the rank-one matrix Ẑp, and each of the individual outputs is
found as ŷp = Mpvec(Ẑp). Although the equivalent formulation
(3) is still difficult to solve, it leads to a convex relaxation which is
described in the ensuing section, after the following remark.

Remark 1 (Robust demixing) The demixing problem – in particu-
lar constraint (2b) – can be rewritten to account for noisy and incom-
plete observations. If the values of y are observed only at a subset of
M nodes, both sides of (2b) must be left multiplied by the sampling
matrix CM∈{0, 1}M×N whose rows correspond to canonical basis
vectors identifying the indexesM = {nm}Mm=1 of the observed en-
tries. Presence of noise in the observations would require replacing
the equality in (2b) with a term penalizing the difference between the
two sides of (2b), with the penalty depending on the specific type of
noise.

2.1. Convex relaxation and algorithmic approach

The main idea is to reformulate (3) as a minimization problem where
the objective consists of tractable surrogates of the non-convex rank
and `2,0 constraints. To simplify exposition, consider replacing the
rank with the nuclear norm, and the `2,0 norm with the `2,1 norm
[17, 18]. The resultant optimization is

{Ẑp}Pp=1 = argmin
{Zp}Pp=1

∑P
p=1 ηp‖Zp‖∗ +

∑P
p=1 βp‖Zp‖2,1 (4)

s. to y =
∑P
p=1 Mpvec (Zp) ,
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where {ηp, βp}Pp=1 are tuning constants that, if no prior information
is available, can be set to ηp = 1 and βp = β for all p. The optimiza-
tion in (4) is convex, so that it can be handled with generic off-the-
shelf solvers. When computational complexity is a concern, one can
alternatively develop efficient algorithms tailored to the structure of
(4), see, e.g., [19] for a related problem.

Recoverability conditions can be found by ignoring the low-rank
nature of all the Zp and focusing on the fact that the concatenation
of the vectorized forms of all these matrices z = vec([Z1, . . . ,ZP ])
is effectively a sparse vector. In this way, one can think of recover-
ing a sparse vector z satisfying y = [M1, . . . ,MP ] z and derive
recoverability conditions in this basic setting [20]. More sophis-
ticated conditions that take into account either the structure of the
linear operators Mp – as done in [10] for blind deconvolution – or
the row-sparse plus low-rank nature of Zp are a matter of ongoing
research.

Remark 2 (Non-convex relaxations) Alternative relaxations of the
combinatorial constraints in (3) can be pursued. In particular, based
on established sparse reconstruction techniques [17, 18, 21, 22], we
may replace the cost function in (4) with∑P
p=1

(
ηp
∑Lp

l=1 log (σp,l + ε1) + βp
∑N
n=1 log

(
‖zTp,n‖2 + ε2

))
,

where σp,l is the lth singular value of Zp; zTp,n is the nth row
of Zp; and ε1 and ε2 are small positive constants. Two chal-
lenges of this approach are: 1) The resultant cost to minimize
is concave and the problem must be addressed using an iterative
majorization-minimization approach [21, 23]. 2) The minimization
of
∑
l log (σp,l + ε1) with respect to the non-square matrix Zp is

not straightforward. One way to overcome this issue is to rely on the
semidefinite embedding lemma as done in, e.g., [11, 21].

3. DEMIXING WITH A SINGLE DIFFUSING GRAPH

If all the signals are diffused in the same graph and then combined,
then the joint demixing and deconvolution problem is inherently
more challenging. To explain this more rigorously, note that if
Sp = S for all p, then the transfer matrix Mp = M is equiv-
alent for all the sources. As a result, the observation equation
y =

∑P
p=1 Mpvec(Zp) can be rewritten as y = Mvec(

∑P
p=1Zp),

which introduces a new source of ambiguity. To be more specific,
consider the minimization form of the feasibility problem in (3), i.e.,
the original non-relaxed precursor of (4),

{Ẑp}Pp=1 = argmin
{Zp}Pp=1

∑P
p=1 ηp rank(Zp) +

∑P
p=1 βp‖Zp‖2,0

s. to y = M vec
(∑P

p=1Zp
)

(5)

Suppose for simplicity that P = 2, denote by Z∗1 and Z∗2 the true
rank-one demixing matrices, and use these to define Z′1 = Z∗1 + Z∗2
and Z′2 = 0. It readily follows that: 1) both {Z∗1,Z∗2} and {Z′1,Z′2}
are feasible solutions1 of (5); and 2) from the triangle inequality we
have that rank(Z′1)+rank(Z′2) = rank(Z′1) ≤ rank(Z∗1)+rank(Z∗2).
In words, the true matrices {Z∗1,Z∗2} never achieve a smaller (rank)
cost than {Z′1,Z′2}. Moreover, if η1 6= η2 then a solution where
either Z′1 = 0 or Z′2 = 0 always achieves a smaller rank cost. A

1Note that any combination of the form {Zθ1 = θ1Z∗1 + θ2Z∗2,Z
θ
2 =

(1− θ1)Z∗1 + (1− θ2)Z∗2} is feasible as well.

similar argument holds for the `2,0 norm. This demonstrates that
the demixing problem with a single diffusing graph is challenging
because the individual Zp are in general non-identifiable and only
Z=

∑P
p=1Zp could be recovered. Thus, we propose a two-step ap-

proach in which we first efficiently obtain the true Z∗ =
∑P
p=1Z

∗
p

and then provide conditions for which the constituent Z∗p can be
uniquely recovered.

3.1. Convex relaxation and algorithmic approach

As done in the Section 2.1, a natural step to design an efficient al-
gorithm for (5) is to replace the combinatorial pseudo-norms in its
objective with their convex surrogates ‖·‖∗ and ‖·‖2,1. This leads to
an instance of (4) with Mp = M for all p. Using arguments similar
to those provided after (5), the solutions to this problem {Ẑp}Pp=1

also suffer from a linear ambiguity.2 An alternative is to reformulate
(4) in terms of Z =

∑P
p=1 Zp as follows

Ẑ = argmin
Z

‖Z‖∗ + β‖Z‖2,1 s. to y = Mvec (Z) . (6)

The computational complexity of this reformulation is lower since it
effectively reduces the number of optimization variables by a factor
of P . Moreover, the formulation in (6) is similar to that of blind
deconvolution (without demixing) with the exception that the true
Z∗ to be recovered, albeit being low-rank, is not rank-one in general.
Nonetheless, the results in [10, Theorem 1] can still be leveraged to
obtain probabilistic guarantees of recovering the true Z∗ in terms of
the matrices Ψ and U associated with the common diffusing graph.

As previously mentioned, recovering the Z∗p from Z∗ is not fea-
sible in general. Hence, one way to ensure recoverability is to im-
pose additional conditions on the filter coefficients and the input sig-
nals. To this end we consider the following two scenarios:
(As1) xTp xp′ = 0 for all p 6= p′ or x̃Tp x̃p′ = 0 for all p 6= p′.

(As2) hTp hp′ = 0 for all p 6= p′ or h̃Tp h̃p′ = 0 for all p 6= p′.
Note that the orthogonality required in these scenarios holds true if,
for example, the vectors involved are sparse and their support is non-
overlapping. In this way, two sparse inputs with non-overlapping
nodes satisfy the first requirement in (As1). Similarly, two bandpass
filters defined in non-overlapping bands satisfy the second require-
ment in (As2). For future reference, we define the matrix Tx = I
if the first requirement in (As1) holds and Tx = U if the second
requirement is true. Similarly, we define Th = I if the first require-
ment in (As2) is true, and Th = Ψ if the second one holds.

Proposition 1 If the input signals {xp}Pp=1 satisfy (As1), the diffus-
ing graph filters {hp}Pp=1 satisfy (As2) and ‖Txxp‖2‖Thhp‖2 6=
‖Txxp′‖2‖Thhp′‖2 for all p 6= p′; then {Z∗p}Pp=1 can be recov-
ered from Z∗.

The proposition can be proved by construction. First, we form the
matrix T = TxZ∗TT

h and factorize it using the singular value de-
composition (SVD) as T = Ldiag(σ)RT . Then, we set the esti-
mated Z∗p as

Ẑ∗p = σp (T
−1
x )lpr

T
p (T

†
h)
T , (7)

2Since both the nuclear and the `2,1 norms are absolutely homogeneous
(the rank and the `2,0 penalties are not), the ambiguity is more severe in
the convex formulation. To see this, note that any solution of the form
Zp = θpZ∗ with θp ≥ 0 and

∑P
p=1 θp = 1 is feasible and achieves the

same
∑P
p=1 ‖Zp‖∗. Hence, the postulated optimization will have multiple

solutions with the same cost than that of the actual Z∗p that we aim to identify.
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Fig. 1: Blind demixing results for scenarios with: (a) single random graph and different diffusing filters; (b) two random graphs coupled
via the “similarity” parameter α (when α = 0 the two graphs are statistically independent, when α = 1 the graphs are the same) ; and (c)
between 2 and 6 brain graphs (the rate of successful recovery is represented).

where σp is the pth largest singular value of T, lp and rp its associ-
ated left and right singular vectors, and † denotes the pseudoinverse.
Then Ẑ∗p = Z∗p for all p follows from the fact that, under the con-
ditions in the proposition, the constituent vectors of the rank-one
matrix Tp = Txx∗p(Thh∗p)

T are orthogonal to those of any other
Tp′ with p′ 6= p. Moreover, the condition ‖Txxp‖2‖Thhp‖2 6=
‖Txxp′‖2‖Thhp′‖2 ensures that there is no rotation ambiguity in
the SVD decomposition, thus guaranteeing recovery.

Remark 3 (A priori information) Identifiability and recovery ben-
efit when prior information on {yp, hp, xp}Pp=1 exists. This is par-
ticularly helpful in the single-graph scenario, where the inherent am-
biguity is larger. A natural way to incorporate probabilistic informa-
tion is to augment the objective of our optimization with tractable
(log) prior distributions. Alternatively, we may have deterministic
knowledge of some of (the entries of) the signals or the filter taps.
This can be incorporated in the form of linear equality constraints.
A particular case that simplifies considerably the structure of the op-
timization is that of {hp}Pp=1 being known. In such a case, the bi-
linearity disappears and the resultant problem can be handled using
classical sparse signal reconstruction tools. Another scenario with
practical relevance is when Kp values of the signal xp are known.
Since we optimize over Zp and not over xp, exploiting this infor-
mation requires considering the slightly more involved constraints
zTp,ixp,i+1 = zTp,i+1xp,i for i ∈ Kp, where Kp = {ni}Kp

i=1 collects
the indexes of the entries of xp that are known; see [11] for details.

4. NUMERICAL RESULTS

We present the recovery performance for three blind demixing sce-
narios. Two of them consider Erdős-Rényi random graphs [24] with
edge probability 0.1. The third one considers graphs representing
regions of the human brain and their density of anatomical connec-
tions for several individuals [25]. In all three cases the adjacency
matrix is used as shift, and the signals xp as well as the coefficients
hp are drawn from a standard multivariate Gaussian. The vectors
xp and hp are normalized to have unit norm, and the number of fil-
ter taps is L = 3. For the optimization we implemented the log-det
relaxation [11,21]. Comparisons with other source localization algo-
rithms are of interest, but, due to the space limitations, they are left
as future work. Results are obtained from 1000 realizations. The
demixing performance is measured via the median of the RMSE,
defined as RMSE = (

∑P
p=1(‖Ẑp − Zp‖2F )/‖Zp‖2F )1/2, or via the

rate of successful demixing, i.e., Pr
[
RMSE < 10−3

]
.

Fig. 1a shows the results of demixing with a single diffusing
graph for varying N . Vectors xp are normalized to have the same
`1 norm but different `2 norm, so that Prop. 1 is satisfied. A few
settings with different number of filters P and number of non-zero
input nodes Q are analyzed. As expected, the performance worsens
for larger values of P andQ. Moreover, we observe that the recovery
for (P =3, Q=3) is harder than for (P =2, Q=6), even when the
latter has more coefficients to estimate, suggesting thatQ is the criti-
cal parameter for recovery. The second scenario explores the impact
of graph similarity in multi-graph deximing with two graphs. These
two graphs are coupled so that α percent of their edges are the same.
Note that α = 1 leads to demixing with a single diffusing graph. Fig.
1b shows that as expected the multi-graph demixing strategy fails for
α = 1, although the performance does not considerably drop until
α = 0.7 (or even until α > 0.9 for N = 50 and Q = 3). Finally,
Fig. 1c depicts the successful recovery rate using brain graphs and
N = 66. The results show that demixing is indeed feasible, although
the performance decreases quickly as Q and P increase. This is not
surprising since the brain graphs at hand exhibit strong similarities.
A compelling observation stems from comparing the results between
(Q= 3, P = 2) in Fig. 1c and (α= 0, Q= 3, N = 50) in Fig. 1b.
The former, and presumably harder, problem of demixing with non-
random graphs presents better performance than the latter; possibly
due to the larger number of nodes (66 vs. 50). One final comment is
in order. The scenarios analyzed in Figs. 1b and 1c suggest that the
graph topologies have an important role in producing amenable blind
deximing problems. An analytical characterization of the recovery
performance is ongoing research and will be reported elsewhere.

5. CONCLUSIONS

This paper generalized the problems of joint demixing and blind
deconvolution to graph signals. Two setups were investigated: one
where each of the individual signals was diffused in a different
graph, and a more challenging one where the graph was the same
for all of them. The resultant non-convex recovery problems were
relaxed and the recovery in both settings was discussed. Numerical
results demonstrated the practical relevance of our algorithms in
synthetic graphs and in biological-inspired networks implementing
local diffusion dynamics. Ongoing work includes assessing how
the properties of the graphs, signals, and filters affect the recovery
performance.
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