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ABSTRACT

Sampling and reconstruction is a fundamentally important problem
in the field of graph signal processing. Many works have been con-
tributed to reconstructing bandlimited signals from measurements
taken on a known subset of vertices. However, in some cases, the
vertex defects occur randomly over the graph. In such situation, the
existing graph signal reconstruction methods fail to deal with such
blind reconstruction problem. In this paper, we formulate the blind
reconstruction problem as Mixed-Integer Nonlinear Programming,
and propose a Joint Detection and Reconstruction (JDR) method to
simultaneously detect the vertices’ working states and reconstruct
the bandlimited signal. The convergence property of the proposed
method is analyzed. In the experimental part, both synthetic dataset
and real-world dataset are applied to verify the proposed methods.

Index Terms— blind reconstruction, bandlimited graph signal,
mixed-integer nonlinear programming.

1. INTRODUCTION

As a fundamental problem in signal processing, graph signal sam-
pling and reconstruction is widely studied. Aimed at preserving
sufficient information of bandlimited graph signals for reconstruc-
tion, sampling schemes including determinant selection sampling
[1, 2, 3], random selection sampling [4], local measurement based
sampling [5], and aggregation sampling [6] have been proposed.

When a bandlimited signal x over an N -vertex graph is sam-
pled according to the selection sampling scheme, the operation is
modeled as the following:

y = h ◦ x+ n, h ∈ {0, 1}N , (1)

where the vector h = [h1, · · · , hN ]T collects the boolean work-
ing states of the vertices, where hi equal 1 when vertex vi works
and 0 for vi being defective, ◦ denotes the Hadamard product, and
n ∼ N (0N , σ

2IN ) represents the additive Gaussian white noise.
Some existing works [2, 7, 8] discuss the theoretical conditions for
the exact reconstruction of bandlimited signals from noiseless obser-
vations. A sampling set is called uniqueness set if bandlimited graph
signals can be uniquely determined by the sampled entries [7].

With the sampling states vector h well-designed and known
as a priori, many bandlimited graph signal reconstruction methods
have been proposed, including least square approach [9], iterative
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least square method [10], iterative weighting method and iterative
propagating methods [3], diffusion operator based method [11], and
kernel-based reconstruction [12], etc.

However, in some cases, due to random vertex defects, the sam-
pling set can not be artificially designed, and the entries of graph
signals observed is not artificially designed but randomly formed
with the sampling states of h blind to the reconstruction method.
Specifically, it is unknown which vertices carry information about
the original signal, and which return pure noise. In such situation,
reconstructing x from y becomes a more difficult problem, and be-
yond the scope of the existing graph signal reconstruction methods.

We noticed that a special case that x is of constant value, or
equivalently, x is 0-bandlimited, is dealt with in [13]. However, to
the best of our knowledge, no prior work has been presented tack-
ling the blind reconstruction of general bandlimited graph signals.
Within a broader range of blind processing of graph signals, [14]
proposed a method to trace back the sparse input to the graph by
the technique of blind deconvolution. In this paper, we address this
problem for the first time and propose a Joint Detection and Recon-
struction (JDR) method to simultaneously detect the working states
of the vertices and reconstruct the bandlimited graph signal. The-
oretical analysis and experimental validation are also included to
demonstrate the behavior of the proposed method.

2. PRELIMINARIES

Provided an N -vertex undirected weighted graph G, a graph sig-
nal x is an N -dimensional vector, with the ith element xi denotes
the scalar assigned to the vertex vi. To analyze the spectral char-
acteristics of graph signals, graph Fourier transform is introduced
via the graph Laplacian L = D − A, with A ∈ RN×N denoting
the adjacency matrix, and diagonal matrix D = diag(d1, · · · , dN )
collecting the degrees of vertices as its diagonal entries. L is a semi-
definite symmetric matrix, with eigenvalues 0 = s1 ≤ · · · ≤ sN
indicating the frequencies of G, and the corresponding eigenvec-
tors, u1, · · · ,uN , constitute the graph Fourier basis. Then the fre-
quency component of signal x on the frequency point sk is denoted
as x̃k = uT

k x. For detailed discussion on graph Fourier transform,
the readers may refer to [15].

A graph signal x is called ω-bandlimited if the spectral support
of x is in the range of [0, ω]. All the ω-bandlimited signals on graph
G constitute a Hilbert subspace named Paley-Wiener space, denoted
as PWω(G). For any graph signal x ∈ PWω(G), there is x̃k =
0,∀k ∈ {j : sj > ω}. Intuitively, the bandlimited signals exhibit
smoothness with respect to the corresponding graph topology.

3. PROBLEM MODELING

We consider the case that the vertex defects occur independently
among the vertices, and the defect probability of each vertex is a
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prior knowledge stacked in vector p = [p1, · · · , pN ]T ∈ [0, 1]N .
Specifically, with probability pi, the vertex vi is defective, and with
probability 1 − pi, the vertex vi works. Whether a vertex works is
not influenced by the working states of other vertices. Recalling the
observing model (1), we have that the working state of vertex vi de-
cides whether the observation yi is pure noise or signal value xi with
additive noise.

In such scenario, we propose to jointly detect the working state
vector h and reconstruct the bandlimited graph signal x according
to the Maximum a posteriori (MAP) criterion. Concretely speaking,
the problem could be casted as the following.

max
h,x

P (h|y;x) ∝ P (y|h;x)P (h),

s.t. h ∈ {0, 1}N , x ∈ PWω(G). (2)

According to the observing model illustrated in (1), with h and x
given, the observations at different vertices, i.e. y1, · · · , yN , are
independent from each other. In addition, the prior information on h
implies that the prior distribution of the vertices’ working states are
mutually independent. Or equivalently, we have

P (y|h;x) =
N∏
i=1

P (yi|hi;xi), P (h) =

N∏
i=1

P (hi). (3)

Specifically, the posterior probability of random variable hi is pro-
portional to (4).

P (yi|hi;xi)P (hi)

∝ (hi(1− pi) + (1− hi)pi) exp

(
− (yi − hixi)

2

2σ2

)
,

∝ exp

(
−wihi −

(yi − hixi)
2

2σ2

)
, (4)

where wi := ln pi
1−pi

is introduced to put the prior information on
hi into the exponent.

According to (3) and (4), problem (2) could be put into the fol-
lowing equivalent form as shown in (5).

min
h,x

wTh+
‖y − h ◦ x‖22

2σ2
,

s.t. x ∈ PWω(G), h ∈ {0, 1}N , (5)

where w = [w1, w2, · · · , wN ]T. But notice that the working ver-
tices do not necessarily constitute a uniqueness set. In other words,
even the vertices’ working states vector h is correctly detected by
solving (5), the corresponding optimal bandlimited graph signal x
is not unique. To get rid off such multiple reconstructed signals
case, we target on reconstructing the possible bandlimited signals
with small energy by solving (6) instead of (5).

min
h,x

wTh+
‖y − h ◦ x‖22

2σ2
+ λ‖x‖22 =: F (x,h),

s.t. x ∈ PWω(G), h ∈ {0, 1}N , (6)

where the parameter λ > 0 is introduced to induce the uniqueness of
reconstructed signal. To be noted, the unique optimal x to problem
(6) is not guaranteed to be the original signal. Specifically, when
the restored working states do not compose a uniqueness set, the
reconstructed x is not trustable. We will discuss the trustability of
the reconstruction result in the next section.

With w = 0N , the above MAP estimator (6) is transformed into
a Maximum likelihood(ML) estimator, which fits for the scenario
where prior distribution parameter p is not available.

Table 1. Joint Detection and Reconstruction (JDR) Framework

Input: observations y, detection function D(·, ·),
reconstruction function R(·, ·), maximum iteration K, threshold ε.

Output: detected working state ĥ, reconstructed signal x̂.

Initialization: x0 = y, k = 0;

Repeat:
1) Detect defects hk+1 = D(xk,y);

2) Reconstruct graph signal xk+1 = R(hk+1,y);

3) (ĥ, x̂) = (hk,xk), k = k + 1;

Until: k = K or |F (xk,hk)− F (xk+1,hk+1)| < ε.

4. JOINT DETECTION AND RECONSTRUCTION
METHOD

The core problem we aim to solve, (6), is a nonconvex Mixed-Integer
Nonlinear Programming (MINLP) problem, which makes it hard to
solve [16]. Noticing that both the nonlinearity and nonconvexity
comes from the term ‖y − h ◦ x‖22, we find the blessing of such
formulation is that when the integer decision variable h is continu-
ous, i.e., h ∈ [0, 1]N , problem (6) turns into a biconvex optimization
problem. If the optimization variables are continuous, the alternative
updating method is prevalently applied to solve biconvex optimiza-
tion problem [17].

In light of this idea, we propose to use this alternative updating
rule to solve the original MINLP problem (6). That is, alternatively
fixing one and updating the other, but one of them is constrained
to be an integer. We can simply accomplish this by limiting the
searching domain of h to be discrete.

The updating framework is given in Table 1. The explicit def-
inition of the detection function D(·, ·) and reconstruction function
R(·, ·) are as follows:

D(x,y) = argmin
h

F (x,h), s.t. h ∈ {0, 1}N , (7)

R(h,y) = argmin
x

F (x,h), s.t. x ∈ PWω(G). (8)

4.1. Detection Function D(·, ·)

A direct observation is that the optimization problem (7) is fully sep-
arable over the vertices. Hence, we haveD(x,y) = [D1(x1, y1), · · · ,
DN (xN , yN )]T, with each element

Di(xi, yi) = argmin
hi∈{0,1}

wihi +
(yi − hixi)

2

2σ2
, (9)

=

{
1, (xi)

2 − 2xiyi < −2σ2wi;

0, elsewhere.
(10)

4.2. Reconstruction Function R(·, ·)

The reconstructing function R(·, ·) admits a closed-form formu-
lation, that is, R(h,y) = UωQ

−1UT
ωdiag(h)y, where Q =

UT
ωdiag(h)Uω + 2σ2λIN . Noticing that Q is positive definite,

function R(h,y) is well defined.

4185



In addition, as the added regularization term is convex and dif-
ferentiable, many existing iterative bandlimited graph signal recon-
struction methods, including [10] and [3], could be readily general-
ized to approximate R(·, ·). By implementing the iterative method,
a nearly optimal result to problem (8) can be achieved without cal-
culating the matrix inversion. Considering that the computational
complexity is not among the main concerns of this work, detailed
discussion on iterative methods is omitted here.

4.3. Trustability of Reconstruction Result

As mentioned in the previous section, even when the working states
vector h is correctly detected, sometimes the reconstructed graph
signal is trustable due to the less of samples. As is known, the in-
vertibility of the matrix UT

ωdiag(h)Uω implies that the working
vertices labeled by the 1’s in h forms a uniqueness set. Further-
more, when the working vertices do form a uniqueness set, the con-
dition number of this matrix is positively correlated with the condi-
tion number of matrix Q. The condition number of Q evaluates the
stability of the reconstructed result. That is, with a larger condition
number, the reconstructed result is less stable to perturbation on the
observation y. So we evaluate the trustability of the reconstruction
result by the condition number of UT

ωdiag(h)Uω . Specifically, if
the condition number is close to 1, we claim that the reconstruction
result being trustable; otherwise, if it tends to infinity, we do not trust
the reconstruction result.

5. SOLVER ANALYSIS

As an extension of alternative solver to biconvex minimization prob-
lems, we find that the proposed alternative solver to problem (6)
share some nice properties. The readers may refer to [17] for a de-
tailed theoretical analysis on biconvex minimization problem. In this
section, we present theoretical analysis to the proposed JDR method
by extending part of the results on biconvex minimization problem
to the scenario of biconvex MINLP.

Remark 1. The sequence of objective function value {F (hk,xk)}k∈N
converges monotonically to a F ∗.

Proof. According to the definition of D(·, ·) and R(·, ·) given in (7)
and (8), we have

F (hk+1,xk+1) ≤ F (hk+1,xk) ≤ F (hk,xk). (11)

In other words, {F (hk,xk)}k∈N is a decreasing sequence. Fur-
ther considering that the function F (·, ·) is lower bonded by∑

i:pi<1/2 wi, the assertion in Remark 1 is achived.

Remark 2. The sequence of variables {hk}k∈N satisfies the follow-
ing properties:

• there is at least one accumulation point (h∗, R(h∗,y)) of the
sequence;

• each accumulation point is a feasible solution to problem (6)
with the same objective function value F ∗.

Proof. First, the feasible set of variable h, {0, 1}N , is a compact set.
Second, thanks to the introduced positive parameter λ, for any 1 ≤
k ≤ K, the reconstructed signal in the kth iterate, xk, is uniquely
decided by the detection result hk with xk = R(hk,y). Hence, we
have that the detection vector sequence {hk,xk}k∈N has at least one
accumulation point. Consequently, there is at least one accumulation
point (h∗, R(h∗,y)) of the sequence {(hk,xk)}k∈N.

With the above analysis, we have a subsequence {hk}k∈K con-
verging to h∗. Provided that the feasible set of h is discrete, a fact is
that there exists a number n, for any k ∈ K that is greater than n, we
have (hk,xk) = (h∗, R(h∗,y)). The feasibility of (hk,xk), ∀k >
1 is straightforward from the definition of R(·, ·) and D(·, ·). Re-
calling Remark 1, a direct result is F (h∗, R(h∗,y)) = F ∗.

Remark 1 indicates that with more iterations conducted, we can
always expect a better detection and reconstruction result under the
criterion of minimizing function F . With Remark 1 discussing the
function value, Remark 2 gives a hint on the detection and recon-
struction result, that is, when sufficiently many iterations are per-
formed, the achieved detection and reconstruction result is an ac-
cumulation point. In other words, if we continue iterating without
stopping, the same solution will appear infinitely many times. How-
ever, the uniqueness and convergence analysis of the detection and
reconstruction result are still open problems.

6. EXPERIMENTAL RESULTS

We validate the proposed JDR method with both synthetic dataset
and real-world dataset. Based on the synthetic dataset, the robust-
ness of the proposed method is tested under different settings. Ex-
periments with the temperature dataset further demonstrates the per-
formance with the defect probabilities p known or unknown.

6.1. Synthetic Dataset

To generate the synthetic dataset, we randomly locate N = 100 ver-
tices according to the uniform distribution within the square [0, 1]×
[0, 1]. A graph is achieved by applying the k-nearest neighbor (k-nn)
method with k = 5. The ω-bandlimited signals x are normalized
isotropically distributed random vectors residing in PWω(G). The
working states of the vertices are randomly generated with the same
defect probabilities pi. The observation y is achieved by (1). The
experimental results are the average of 5E4 independent trials.

In the first experiment, we demonstrate how the defect prob-
ability and signal bandwidth affect the detection and reconstruction
performance. The signal-to-noise ratio (SNR) is 20dB. One can read
from the left plot of Fig. 1 that for various bandwidths, the detection
error first increases then decreases as pi goes up, and the peak ap-
pears at pi = 0.5. The reason is that when pi equals 0.5, the entropy
of h approaches its maximum, or equivalently, the vertices’ working
states are the most uncertain. One may further notice that the detec-
tion error curve is not symmetric about pi = 0.5. With pi increasing
over 0.5 towards 1, the corresponding detection error at pi is larger
than that at 1 − pi. This observation coincides with the increasing
pattern of the condition number curves and the signal reconstruction
error curves as shown in right two plots of Fig. 1. The reason is that
with pi growing towards 1, more defects occur, and less information
of the original signal is available, leading to the sharp increase of
the condition number, and hence the increase of reconstruction er-
ror, further preventing the rapid decrease of the detection error. This
phenomenon also implies that the condition number is a good crite-
rion to evaluate the trustability of the reconstruction result. As to the
bandwidth, when ω increases, more working vertices are required
to achieve a trustable reconstruction or a same signal reconstruction
quality.

In the second experiment, the proposed JDR method is tested
in different noise scenarios and the performance is demonstrated in
Fig. 2. Comparing different SNR settings, the curves in each subplot
of Fig. 2 follow the same trend when pi varies. And better detection
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Fig. 1. The performance of the proposed JDR method with various
defect probability and cut-off frequency.

pi

0 0.2 0.4 0.6 0.8 1

kĥ
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Fig. 2. The performance of the proposed JDR method with various
defect probability and SNR.

and reconstruction performance is achieved under high SNR setting.
Besides, the right subplot of Fig. 2 indicates that when the defect
probability is rather small (below 0.1), a more than 15dB SNR gain
is achieved by applying the proposed method.

6.2. Temperature Dataset

To evaluate the performance of the proposed JDR method on real-
world data, we experiment with the temperature dataset [18] col-
lected by 150 weather stations located in the mainland of America
over the year of 2015. Taking each station as a vertex, a graph is
formed by applying 8-nn method. The edge weight is taken as the
inverse of the square geodesic distance between the connected sta-
tions. A graph signal x corresponds to the temperature at all stations
at a single day. Fig. 3 displays one of the 365 graph signals and one
can observe that it is smooth with respect to the generated graph,
and could be approximated by bandlimited graph signals. Hence,
we project the graph signals onto the subspace PWs10(G) to obtain
s10-bandlimited graph signals. With p1 = · · · = pN , observations
of each temperature are obtained according to the observing model
(1) with the SNR fixed as 20dB.

In this experiment, we test the proposed method in two different
scenarios, i.e., with the defect probability pi known and unknown,
respectively. As discussed in section III, while pi is unknown, an
ML estimator is applied by setting w = 0N . By varying the defect
probability pi from 0 to 1, the detection and reconstruction errors
are compared in Fig. 4. As a reference, the curve with legend “h
known” is achieved by reconstructing x via calculating R(h,y).

On the one hand, it can be read from Fig. 4 that the trends of
all 3 types of curves produced by the MAP-based method are in
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good consistency with those shown in Fig. 1 and 2. On the other
hand, the detection error curve given by the ML-based method is flat
before a quick increase, where the increase coincides with the in-
crease of the reconstruction error. And the inadequacy of the work-
ing vertices is the main driven factor of such increase. Comparing
the two solvers, as more prior information is utilized, MAP-based
method delivers better detection and reconstruction results than the
ML-based method. In the middle plot, when pi approaches 1, the
ML-based method gives detection result with low condition number,
but the amount of samples is not adequate to reconstruct the original
graph signal, and hence the reconstruction result is not trustable due
to the high detection error, which further implies that the condition
number can only evaluate the trustability of the reconstruction re-
sult given by MAP-based method but not for ML-based method. In
addition, the signal reconstruction error given by the two proposed
methods are close to the reconstruction error when working state
vector h is aware.

7. CONCLUSION

This paper studies the problem of blind reconstruction of bandlim-
ited graph signal, which is formulated as an MINLP problem for
the first time. We then propose a joint detection and reconstruction
method to simultaneously detect the working states of the vertices
and reconstruct the graph signal. Experiments on both synthetic
dataset and real-world dataset verify the proposed method in solv-
ing blind reconstruction problem.
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