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ABSTRACT

Network-based epidemics models try to characterize the impact of

network topology, which represents contagion pathways, on the

spread of infection. Although these models explicitly consider the

dynamics of individuals in the given network (i.e., the state of the

system is x(t) = [x1(t), x2(t), . . . , xN(t)]T ), analysis has focused

on characterizing the vulnerability of the entire population rather

than the vulnerability of the individuals in the population. We focus

on characterizing the vulnerability of the ith individual in the net-

work by studying the marginal probability of infection, P (xi = 1),
of the scaled SIS process. Studying the vulnerability of individuals

is important because it may be tempting to assume that P (xi = 1)
is related to the degree of the ith node. Since infection rate is usually

assumed to be dependent on the number of infected neighbors, then

it seems reasonable that nodes with more connections (i.e., higher

degree) would be more at risk. We show that this is not always true.

Further, with a closed-form approximation of P (xi = 1), as solving

for the exact probability requires the summation of 2N terms, we

characterize the conditions for when degree distribution is a good

indicator of how susceptible an individual is to infection.

Index Terms— network science, scaled SIS process, network

process, marginal probability, Markov network

1. INTRODUCTION

Classic compartmental epidemics models study the dynamics of

the total number (or percentage) of infected and/or healthy in-

dividuals in a population. In contrast, network-based epidemics

models characterize the dynamics of N -individuals in a network

(i.e., x(t) = [x1(t), x2(t), . . . , xN(t)]T ) while explicitly account-

ing for some network structure describing significant contacts (i.e.,

potential contagion pathways) between individuals [1, 2, 3, 4, 5, 6];

in these models, the infection rate of a susceptible is assumed to

depend on its number of infected neighbors, thereby coupling the

network structure to the dynamics of the epidemics.

One question of interest is the impact of network structure on the

epidemics dynamics. However, network-based epidemics model, de-

spite characterizing the dynamics of x(t), has primarily focused on

analyzing the same macroscopic quantities, such as the percentage

of infected individuals, as classic epidemics models. Reference [7]

showed a relationship between the spectral radius of the adjacency

matrix and the epidemics threshold.

In this paper, we focus instead on analyzing the microscopic

vulnerability of each of the N individuals in the population and

and its relationship to the network structure. Adopting the scaled
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susceptible-infected-susceptible (SIS) process introduced in [8, 9],

we study microscopic vulnerability using P (xi = 1), the probabil-

ity of infection of the ith agent. In particular, we are interested in

how P (xi = 1) depends on the underlying network structure. Since

in network-based epidemics models, the infection rate of an individ-

ual is dependent on its number of infected neighbors, it is reasonable

to assume that individuals with higher degree are more vulnerable

to infection. We show by analyzing a closed-form approximation of

P (xi = 1) that this is not necessarily correct —the coupling be-

tween network structure and dynamics parameters results in a more

subtle relationship between network structure and P (xi = 1).
Section 2 reviews network-based epidemics models, specifically

details the dynamics of the scaled SIS process. Section 3 shows

with a simple example that the marginal probability of infection,

P (xi = 1), demonstrates 3 types of behaviors: 1) P (xi = 1) is

approximately the same for all the nodes; 2) P (xi = 1) can be or-

dered by nodal degree; and 3) P (xi = 1) is not approximately the

same for all the nodes nor can it necessarily be ordered by nodal de-

gree. While the exact computation of P (xi = 1) is infeasible since

it involves knowing the partition function, which requires a summa-

tion of 2N terms, section 4 presents a closed-form approximation of

P (xi = 1) that holds for certain dynamics and also explains the 3

observed types of behavior. Section 5 concludes the paper.

2. BACKGROUND: SCALED SIS PROCESS

Network-based epidemics models explicitly account for an arbitrary,

heterogeneous network, G(V, E), whose edges represent potential

infection transmission pathways. Typically, the network is assumed

to remain static in time. We also assume that it is unweighted and

undirected. Similar to other stochastic network-based epidemics

models such as the contact process [10, 11, 12], the scaled SIS pro-

cess, introduced in [8], is a (continuous-time) Markov process. At

any time t ≥ 0, the state of the population is described by the con-

figuration

x(t) = [x1(t), x2(t), . . . , xN (t)]T ,

where xi(t) is the state of the ith individual at time t. We assume that

an individual can either be healthy (xi(t) = 0) or infected (xi(t) =
1).

Let T+
i x denote the configuration that is the same as x except

that the ith individual becomes infected, and let T−

j x denote the

configuration that is the same as x except that the jth individual

heals. The scaled SIS process assumes that

1. X(t) transitions to a configuration where the jth agent, j =
1, . . . , N , is healed with transition rate:

q(x, T−

j x) = µ, x 6= T
−

j x. (1)
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2. X(t) transitions to a configuration where the ith agent, i =
1, 2, . . . , N , is infected with transition rate

q(x, T+
i x) = λγ

mi , x 6= T
+
i x. (2)

where mi =
∑N

j=1 Aijxj is the number of infected neigh-

bors of node i. The matrix A = [Aij ] is the adjacency matrix

of G(V,E).

The parameter µ > 0 is the healing rate. The parameter λ > 0
is the exogenous (i.e., spontaneous) infection rate—when mi = 0,

the infection rate is λ. The parameter γ > 0 is the endogenous

(i.e., contagion) infection factor; it is unit-less and accounts for the

number of infected neighbors. The state space of the scaled SIS

process is X = {x} and the size of the state space is 2N .

There are three major differences between the scaled SIS process

and other common stochastic network-based models: 1) we assume

that infection can come from outside the population. This means

that there is no absorbing Markov state since a healthy individual

always has a nonzero probability of becoming infected; 2) the infec-

tion rate depends exponentially on the number of neighbors instead

of linearly. We discussed the difference between linear dependence

versus exponential dependence in [13]; 3) lastly, the scaled SIS pro-

cess has a closed-form equilibrium distribution, π(x), that describes

the behavior of the process for t → ∞ (we drop the dependence of

the network configuration x on time to denote that the process has

reached equilibrium):

π(x) =
1

Z
e
H(x)

, x ∈ X (3)

where Z is the partition function and is defined as

Z =
∑

x∈X

(
λ

µ

)1T x

γ
x
T

Ax

2 . (4)

The negative of H(x), −H(x), is the Hamiltonian and represents

the energy of a configuration x. The exponent H(x) is

H(x) = 1Tx log

(
λ

µ

)
+

x
T
Ax

2
log(γ). (5)

3. INDIVIDUAL VULNERABILITY TO INFECTION

In this paper, we focus on studying the vulnerability of individual

agents to infection rather than the susceptibility of the entire popu-

lation. The vulnerability of the ith individual can be characterized

by how likely it is to be infected at some time t ≥ 0, P (xi(t) =
1) ∈ [0, 1]. We are particularly interested in understanding how

P (xi(t) = 1) depends on the networks structure; it is important then

to study the marginal probabilities at equilibrium since P (xi(0) =
1) = 1 for any infection source; the transient behavior of marginal

probabilities depends more on the location of the infection source,

which may be independent of the network topology.

At equilibrium, the marginal (i.e., singleton) probability of in-

fection of the scaled SIS process is :

lim
t→∞

P (xi(t) = 1) = P (xi = 1)

=
∑

x∈X :xi=1

π(x) =
1

Z

∑

x∈X :xi=1

e
H(x)

,
(6)

where π(x) is the equilibrium distribution (3) and H(x) is defined

in (5).

For small networks (i.e., N ≤ 20 means |X | ≤ 220), we can

compute P (xi = 1) exactly at all nodes. Figure 2 shows P (xi = 1)
for selected nodes of a 16-node network (see Figure 1a). As P (xi =
1) also depends on the dynamics parameters λ

µ
and γ, we set λ

µ
to a

constant value and change γ to study the behavior of P (xi = 1); as

γ increases, the infection rate due to contagion increases, and we ex-

pect that P (xi = 1) will increase to 1 for all the nodes. In particular,

we consider P (xi = 1) for 5 different nodes: i = 1, 5, 6, 9, 10. In

the underlying network, node 1 has 5 neighbors node 5 has 2 neigh-

bors, node 6 has 3 neighbors, node 9 has 4 neighbors and node 10

has 2 neighbors.

In Figure 2a (λ
µ

= 0.6895 and γ ∈ [1, 10]), P (x1 = 1) ≥

P (x9 = 1) ≥ P (x6 = 1) ≥ P (x5 = 1) ≥ P (x10 = 1); the

marginal probability of infection can be ordered by the degree of

the node in the underlying network. However, in Figure 2b (λ
µ

=

0.00025, γ ∈ [1, 1200]), with a different range of dynamics param-

eters, P (x1 = 1) ≥ P (x5 = 1) ≥ P (x10 = 1) ≥ P (x9 = 1) ≥
P (x6 = 1); in this case, the marginal probability of infection can

not be ordered by the nodal degree.
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Fig. 1: 16-node network

From this simple example, we see there are roughly three types

of behaviors that characterize the marginal probability at equilib-

rium:

Type 1: P (xi = 1) ≈ P (xj = 1), ∀i, j = 1, 2, . . . , N, i 6= j

Type 2: Let ki denote the degree of the ith node in the underlying

network G(V,E). If ki > kj , then P (xi = 1) > P (xj = 1)

Type 3: Let ki denote the degree of the ith node in the underlying

network G(V, E). If ki > kj , it is possible that P (xi = 1) <
P (xj = 1)

For type 1), the network structure does not affect the marginal

probabilities since all nodes have similar probability of being in-

fected; for type 2), only the local description of the network matters

since the marginal probabilities of infection can be ranked by the

node degree in the underlying network G(V,E); and for type 3), the

local description of the network is not sufficient to rank the marginal

probabilities since the P (xi = 1) may not necessarily be ordered by

the nodal degree.

When the network is large, exact computation of marginal prob-

abilities (6) becomes prohibitively expensive; these probabilities

may be approximated by sampling method [14]. In the next section,

we approximate by a closed-form expression the marginal probabili-

ties P̂ (xi = 1); this approximation gives insight into the three types

of observed behavior.
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Fig. 2: P (x1 = 1), P (x5 = 1), P (x6 = 1), P (x9 = 1), P (x10 =
1) for Different Dynamics Parameters

4. APPROXIMATING MARGINAL PROBABILITIES

We find a reasonable approximation to the marginal probability of

infection, P̂ (xi = 1) ≈ P (xi = 1), for all nodes in an underlying

network.

Theorem 4.1. [Proof in Appendix] Consider a scaled SIS process

with parameters λ, µ, γ with underlying network structure G(V,E)
and most-probable configuration x

∗ = [x∗
1, x

∗
2, . . . , x

∗
N ]T , where

x
∗ = argmax

x∈X
π(x).

If eH(x∗) >> eH(x),∀x ∈ X \ x
∗, where H(·) is the exponent of

the equilibrium distribution (5) and

m
∗

i =
N∑

j=1

Aijx
∗

j ,

then

P (xi = 1) ≈ P̂ (xi = 1) =
1

1 +
(

λ
µ
γm∗

i

)−1 (7)

In general, the marginal probabilities of infection (6) can not

be described in closed-form. However, with the condition that

eH(x∗) >> eH(x),∀x ∈ X \ x
∗, meaning that the probability of

the most-probable configuration significantly dominates over the

other 2N − 1 configurations in the equilibrium distribution, then

Theorem 4.1 tells us that P (xi = 1) can be approximated in closed-

form by (7). Figure 3 shows the normalized ℓ2 difference between

the true P (xi = 1) and the approximate P̂ (xi = 1) for the 16-node

network shown in Figure 1a with different λ
µ

and γ values. The

maximum deviation between the approximation to the true value is

1. We see that the closed-approximation (7) is good for some ranges

of dynamics parameters but poor for others; this depends on when

the condition of Theorem 4.1 is satisfied or not.
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While the closed-form approximation is not universally good for

all parameter values, it gives insight on understanding the three be-

havior types since P̂ (xi = 1) depends only on the most-probable

configuration x
∗ rather than having to marginalize over 2N−1 con-

figurations. When x
∗ = x

0 = [0, 0, . . . , 0], then m∗
i is the same for

every node (i.e., zero), Therefore, we expect P̂ (xi = 1) to be the

same for all the nodes. This results in type 1 behavior. We see this in

both Figure 2a and Figure 2b when the endogenous infection factor

γ is small.

When x
∗ = x

N = [1, 1, . . . , 1], then m∗
i is equal to the degree

of the ith node in the underlying network. Assuming that γ > 1,

then nodes with larger number of neighbors in G(V,E) will have

higher probability of being infected. This results in type 2 behavior.

This is the behavior we see in Figure 2a. However, with high enough

infection rates λ and/or γ, then P̂ (xi = 1) saturates to 1 for all the

nodes, resulting again in type 1 behavior.

Type 3 behavior, which we see in Figure 2b is the most interest-

ing. We showed in [9] that x∗ may be a non-degenerate configura-

tion (i.e., x∗ 6= x
0,xN ). When the dynamics parameters are such

that 0 < λ
µ
< 1 and γ > 1, the non-degenerate configurations can

be explained by the presence of denser subgraphs, subgraphs with

higher average degree than the entire network, in the underlying net-

work G(V,E).

Note that P̂ (xi = 1) depends on the number of infected neigh-

bors in the most-probable configuration, x∗, not on the degree of the

node in the underlying network G(V,E). If a node has a small num-
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ber of infected neighbors in a non-degenerate most-probable config-

uration x
∗, even though it may have a high degree in G(V,E), then

its marginal probability of infection is also small. Therefore, P̂ (xi =
1) is not ranked by the degree of the ith node in G(V,E). Fig-

ure 1b shows the most-probable configuration when λ
µ

= 0.00025

and γ = 600. We see that m∗
6 = 1 even though node 6 has 3

neighbors in G(V,E); this explains why in Figure 2b, P (x6 = 1)
is smaller than the marginal probabilities of other nodes with lower

degree.

4.1. Real-World Network

Real-world networks of interest are often large, precluding the

computation of the marginal probabilities. Figure 4 shows the

approximate marginal probabilities of a 4941-node representa-

tion of the US Western Power Grid for dynamics parameters
λ
µ

= 0.071053, γ = 4.0789 [15]. This approximation is possible

because the most-probable configuration can be solved efficiently

when 0 < λ
µ

< 1 and γ > 1 [9]. This approximation can also

be checked against numerical approximations using sampling tech-

niques [14]. Using P̂ (xi = 1), the node with the highest degree

(19 neighbors) has P̂ (xi = 1) = 1; however the node with the

second highest degree (18 neighbors) has P̂ (xi = 1) = 0.0663, the

minimum probability of infection of all the nodes. This means that

the marginal probability of infection can not be ranked by degree.

Fig. 4: P̂ (xi = 1) of the US Western Power Grid for λ
µ

=

0.071053, γ = 4.0789 (P̂ (xi = 1) range from 0.0663 (white) to

1 (dark blue))

5. CONCLUSION

Network-based epidemics processes assume that infection rate de-

pends on the number of infected neighbors. Therefore, it is appeal-

ing to consider if the probability of infection of any particular node

can be characterized by its connectivity in the underlying network.

If this is the case, then the degree distribution can be used to rank

the vulnerability of individual nodes. This paper shows that this in-

tuition is not always true. Using a closed-form approximation of the

marginal probabilities of π(x), we argue that the marginal proba-

bilities of infection P (xi = 1) may not dependent on the degree

of the node in G(V,E), but the degree of the node in a subgraph

of G(V,E) (i.e., the subgraph induced by a non-degenerate most-

probable configuration).

This means that if we want the degree distribution to be an ac-

curate reflection of nodal vulnerability then we must 1) restrict the

dynamics parameters of the network process to ranges such that non-

degenerate most-probable configurations do not dominate over other

configurations or 2) consider only network structure G(V,E) that

will not result in non-degenerate most-probable configurations for

any dynamics parameters (see [9]). In the future, we will consider

better closed-form approximations that depend on more than just the

most-probable configuration as well as relating these mathematical

approximations to numerical approximations via sampling or mes-

sage passing algorithms.

6. APPENDIX: PROOF FOR THEOREM 4.1

Proof. The equilibrium distribution of the scaled SIS process (3) is a
Gibbs distribution. We know that the ratio of marginal probabilities
is

P (xi = 0)

P (xi = 1)
=

∑
x∈X :xi=0 e

H(x)

∑
x∈X :xi=1 e

H(x)
. (8)

Ideally, we want to avoid summing over 2N−1 configurations.

When eH(x∗) >> eH(x),∀x ∈ X \ x
∗, we can consider only the

most-probable configuration. There are 2 cases:

When x∗
i = 0. Let T+

i x
∗ denote the configuration that is the

same as x
∗ except node i changes state to 1. Assuming

eH(x∗) >> eH(x), we can approximate the numerator of (8)

with eH(x∗). It is a question if we can approximate the

denominator of (8) with eH(T+

i
x
∗); we argue that this is

the case when the assumption regarding the dominance of
the most-probable configuration is satisfied. Consider some
other configuration H(x′) where the ith node is also 0, then

H(T+
i x

∗) −H(T+
i x

′) = H(x∗) + log

(
λ

µ

)
+

N∑

j=1

Aijx
∗
j log(γ))

−



H(x′) + log

(
λ

µ

)
+

N∑

j=1

Aijx
′
j log(γ)





Assuming that eH(x∗) >> eH(x), then H(T+
i x

∗) −
H(T+

i x
′) > 0 and we can (roughly) approximate (8) as

P̂ (xi = 0)

P̂ (xi = 1)
=

eH(x∗)

eH(T+

i
x∗)

,

and show that

P̂ (xi = 1) =
1

1 +
(

λ
µ
γ
∑

N
j=1

Aijx
∗

j

)−1
. (9)

When x∗
i = 1. Let T−

i x
∗ denote the configuration that is the same

as x∗ except node i changes state to 0, then

P̂ (xi = 0)

P̂ (xi = 1)
=

eH(T−

i
x
∗)

eH(x∗)
,

resulting in the same approximation as (9).
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