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ABSTRACT

The first step in any graph signal processing (GSP) task is
to learn the graph signal representation, i.e., to capture the
dependence structure of the data into an adjacency matrix.
Indeed, the adjacency matrix is typically not known a priori
and has to be learned. However, it is learned with errors. A
little, if any, attention has been paid to modeling such errors
in the adjacency matrix, and studying their effects on GSP
tasks. Modeling errors in adjacency matrix will enable both
to study the graph error effects in GSP and to develop robust
GSP algorithms. In this paper, we therefore introduce practi-
cally justifiable graph error models. We also study, both ana-
lytically and in terms of simulations, the graph error effect on
the performance of GSP based on the example of independent
component analysis of graph signals (graph decorrelation).

Index Terms— Erdös-Rényi graphs, error effect, graph
signal processing, minimum distance index, shift matrix

1. INTRODUCTION

Graph signal processing (GSP) expands the standard signal
processing tools to datasets whose structures differ from those
of time series [1, 2]. Such data arise from multiple fields,
including for example sensor networks, brain networks, gene
regulatory networks and social networks [3, 4, 5, 6]. In the
first step of any GSP task, the dependence structure of the
data should be captured into an adjacency matrix A. The ijth
element of A is nonzero if the ith and the jth data units are
related, and the value [A]ij = aij describes the strength of
the relationship.

It has been argued that knowing A a priori is not always
possible, and that precise estimation of the adjacency ma-
trix (or the graph Laplacian matrix) is important for succesful
GSP [7, 8]. However, studying the consequences of misspec-
ifying the adjacency matrix as a result of imperfect learning
is missing in the literature. In this paper, we introduce prac-
tically justifiable graph error models that aim to capture the
effect of imperfectly learned signal graph adjacency matrix.
They are useful for analyzing graph error effects in GSP as
well as for designing robust GSP algorithms. As an exam-
ple, we study the graph error effect on the performance of
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independent component analysis (ICA) of graph signals by
quantifying the effect of adjacency matrix errors to the per-
formance of the second-order source separation method of
[6], referred hereafter as graph decorrelation (GraDe). The
study is performed both analytically and in terms of simula-
tions. To the best of our knowledge, this is the first work that
introduces graph error models for GSP and studies their effect
in subsequent GSP tasks.

Notation: We use boldface capital letters for matrices,
boldface lowercase letters for vectors, and capital calligraphic
letters for sets. The exceptions are 1N which is the N -
dimensional vector full of ones, the M × N matrix full of
ones 1M×N = 1M1⊤

N , and 1A is a matrix of the same size
as A, such that [1A]ij = 1, if aij ̸= 0 and [1A]ij = 0, if
aij = 0. The matrix IN×N is the N ×N identity matrix. The
notations (·)⊤, ⊙, ∥ · ∥, tr{·}, P(·), E{·}, and var(·) stand for
the transpose, Hadamard product, Euclidian norm of a vector,
trace of a matrix, probability, mathematical expectation, and
variance, respectively.

2. GRAPH ERROR MODELS

Let G = (N , E) be a directed graph that represents a graph
signal, where N is the set of N nodes and E is the set of edges.
Then the true but unknown adjacency matrix of the graph G,
denoted as A, is a matrix that satisfies the conditions aii = 0
for i = 1, . . . , N and aij ̸= 0 if and only if (i, j) ∈ E , i.e.,
there is an edge from the jth node to the ith node.

For developing our graph error models, we will use the
Erdös–Rényi model according to which a random graph is
constructed by connecting nodes randomly with a constant
probability [9]. The corresponding graph is denoted as G =
(N , ϵ) and its adjacency matrix ∆ϵ is a random N ×N ma-
trix such that P([∆ϵ]ij = 1) = ϵ and P([∆ϵ]ij = 0) = 1− ϵ
for all i ̸= j, and [∆ϵ]ii = 0 for i = 1, . . . , N , where
each element of the matrix is generated independently from
the other elements. An important characteristic of the Erdös-
Rényi graph is that it does not allow for formations of com-
munities [10], and if applied on the top of another graph, it
will not change the essential structures of such graphs, which
can be described, for example, in terms of other kernel-based
random graphs known as graphons [10, 11, 12]. Instead, it
just disturbs the spectrum of the original graph. Whether the
essential structures in a graph signal contaminated by Erdös-
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Rényi graph can be correctly captured will depend of course
on how large the probability ϵ is.

Because of the errors in the adjacency matrix learning,
the estimated adjacency matrix will deviate from the true one.
Consider first unweighted graphs, for which the adjacency
matrix becomes A = a1A where a > 0 is some constant
weight. Assuming that the outcome of the graph signal ad-
jacency matrix learning is accurate enough, that is, assuming
that all or sufficiently many essential structures of the graph
signal are captured correctly, the learning errors can be accu-
rately described by the Erdös-Rényi model. Then the actually
available learned adjacency matrix of a graph signal can be
modeled as an inaccurate version of A, that is,

Aϵ = A+∆ϵ ⊙ (a1N×N − 2A). (1)

According to model (1), the true adjacency matrix of a
graph signal is disturbed as a result of imperfect learning by
the Erdös-Rényi model, where the level of distortion depends
on the probability ϵ in the following way. Since the Erdös-
Rényi graph applies on the top of another graph, an edge can
be added with probability ϵ, when there is no edge in the true
graph, or an edge of the true graph can be removed with the
same probability. It corresponds to flipping the value from 0
to 1 or from 1 to 0 in the matrix 1A in the positions corre-
sponding to value 1 in the Erdös-Rényi adjacency matrix ∆ϵ.

The basic model (1), can be easily extended to the case
where the probability of removing an edge from a graph
which correctly captures a graph signal, denoted as ϵ1, is not
the same as the probability of adding an edge, which does
not exist in the true graph, denoted as ϵ2. The corresponding
inaccurately learned adjacency matrix of a graph signal can
then be modeled as

Aϵ1,ϵ2 = A−∆ϵ1 ⊙A+∆ϵ2 ⊙ (a1N×N −A). (2)

Model (2) can be interpreted as an application of two
Erdös–Rényi graphs on top of the true graph, where one
Erdös–Rényi graph G = (N , ϵ2) can only add edges which
do not exist in the true graph, while the other Erdös-Rényi
graph G = (N , ϵ1) can only remove existing edges. It is easy
to see that (2) is equivalent to (1) when ϵ1 = ϵ2 = ϵ.

Further, model (2) can be extended to graph signals rep-
resented by weighted graphs. Let A be the set of nonzero
elements of the true A. The inaccurately learned weighted
adjacency matrix is then modeled as

Aϵ1,ϵ2,c =A+ (1N×N −∆ϵ1)⊙ 1A ⊙Σc −∆ϵ1 ⊙A

+∆ϵ2 ⊙B⊙ (1N×N − 1A) (3)

where B is an N ×N matrix whose elements are drawn from
A with replacement and Σc is an N × N matrix whose ele-
ments are drawn from a zero mean Gaussian distribution with
variance cσ2, where σ2 is the sample variance of A and c is
the variance multiplier.

Moreover, models (1)–(3) can be easily revised for undi-
rected graphs by defining lower triangular matrices ∆l

ϵ and
Σl

c analogously to ∆ϵ and Σc, and then replacing ∆ϵ and Σc

by ∆l
ϵ + (∆l

ϵ)
⊤ and Σl

c + (Σl
c)

⊤, respectively.
Models (1)–(3) all share the same additive structure, i.e.,

have the form
W = A+E (4)

where W ∈ {Aϵ, Aϵ1,ϵ2 , Aϵ1,ϵ2,c} and E ∈ {∆ϵ ⊙
(a1N×N −2A), −∆ϵ1⊙A+∆ϵ2⊙(a1N×N−A), (1N×N−
∆ϵ1)⊙ 1A ⊙Σc −∆ϵ1 ⊙A+∆ϵ2 ⊙B⊙ (1N×N − 1A)}.
Then the error matrix E can be viewed as an analog of the
additive error/noise component in the traditional signal pro-
cessing and time series analysis. Moreover, the Erdös–Rényi
graph is the basic GSP error model analogous to the Gaussian
noise in the traditional signal processing.

3. GRAPH MOVING AVERAGE SIGNAL MODEL

Translating time series concepts from the traditional signal
processing into the GSP context is yet a major part of GSP
literature. Indeed, developments in GSP are typically based
on defining/considering a certain meaningful, but not unique,
shift operator, Laplacian matrix and graph filter being the
most popular ones [7, 8, 13]. Here we extend the framework
of designing meaningful shift operators by introducing and
analyzing a basic graph moving average (GMA) signal model.
Specifically, the GMA signal model of order m, GMA(m),
called after the traditional time series moving average (MA)
model, is given as

z = y +

m∑
l=1

θlA
ly (5)

where y , [y1, . . . , yN ]⊤ with y1, . . . , yN ∼ N(0, σ2
y) being

mutually independent Gaussian random variables with zero
mean and variance σ2

y , and θ1, . . . , θm are MA coefficients.
Then the composite shift matrix corresponding to GMA(m)
model (5) and defined via the signal graph adjacency matrix
A is

∑m
l=1 θlA

l. Such composite shift matrix can be decom-
posed and viewed as an iterative application (m times) of the
basic shift matrix, the adjacency matrix A itself, weighted by
corresponding MA coefficients {θl}ml=1. To the best of our
knowledge, the GMA has been considered before in [6], but
was not studied. Notice that the traditional time series MA
model is obtained from (5) when A is the cycle graph which
satisfies aij = 1, if j = i− 1, and aij = 0, otherwise.

Let us now derive some statistics of the graph signal given
by (5). For analytical tractability of the later studies and be-
cause of the space limitations, we limit our study here mostly
for the GMA(1) model

z = y + θAy = Ãy (6)

where Ã , IN×N +θA. In detailed view, the value of the ith
node is given by zi = yi + θ

∑
j∈Ni

aijyj , where Ni denotes
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the incoming neighbors of node i. Thus, if θ ̸= 0, two nodes
are correlated if they are neighbors, or if they have shared
incoming neighbors.

The covariance matrix of the graph signal z given by the
GMA(1) model can be found as a function of A as follows

Cz(A) , E
{
zz⊤

}
= E

{
Ãyy⊤Ã⊤

}
= ÃE

{
yy⊤} Ã⊤

=σ2
yÃÃ⊤=σ2

y

(
IN×N+θ

(
A+A⊤)+θ2AA⊤) (7)

where the last before last equality follows from the fact that
E{yy⊤} = σ2

yIN×N . Moreover, the covariance matrix for
the general GMA(m) in (5) can be obtained by substituting
the expression IN×N +

∑m
l=1 θlA

l into the last before last
equality instead of Ã.

The covariance matrix of the graph signal (6) with inaccu-
rately learned graph adjacency matrix modeled as in (4) can
be obtained as

Cz(W) = σ2
y

(
IN×N+θ

(
W +W⊤)+θ2WW⊤)

=Cz(A) + σ2
yθ

(
E+E⊤+θ(AE⊤+EA⊤+EE⊤)

)
(8)

=Cz(A) +Cz(E)+σ2
y

(
θ2

(
AE⊤ +EA⊤)−IN×N

)
.

It can be seen from (8) that the covariance matrix of the graph
signal (6) with inaccurately learned A is not only the summa-
tion of the covariance matrices of A and E, but has a third
component.

For subsequent GSP tasks, such as for example ICA dis-
cussed in Section 4, or even for the shift operator learning
itself as in [8], the graph signal autocovariance is of a high
importance. It is proportional to a weighted sum of the co-
variances between the nodes of a graph signal, and serves, for
example, as a measure of smoothness with respect to the shift
matrix. To derive an expression for the autocovariance of the
graph signal given by (6), let us first define the centering ma-
trix H , IN×N −1N×N/N . The matrix H is symmetric and
H2 = H. The graph signal autocovariance can then be found
as

E
{

1

N
(Hz)⊤WHz

}
=

1

N
E
{
z⊤HWHz

}
=

1

N
E
{
y⊤Ã⊤HWHÃy

}
=

1

N
tr {HWHCz(A)}

=
σ2
y

N
tr
{(

H+ θA⊤H
)
W (H+ θHA)

}
. (9)

4. INDEPENDENT COMPONENT ANALYSIS

After introducing the graph signal error models and the GMA
signal model, our objective is to investigate the graph error ef-
fect on the performance of GSP tasks. In this section, we take
ICA of a mixture of GMA signals using the GraDe method
[6] as an example of a GSP task.

Let X ∈ RP×N denote P -dimensional graph signal gen-
erated as a mixture of independent components according to
the model

X = ΩZ+ µ1⊤
N (10)

where Ω ∈ RP×P is a full rank mixing matrix, Z ∈ RP×N is
the matrix of independent components with zero means and
unit variances, and µ ∈ RP is the location vector. We further
assume that each of the components satisfy GMA model with
unweighted and symmetric A such that P (aij = a) = α
and P (aij = 0) = 1 − α. The ICA goal is to estimate the
unmixing matrix Γ = Ω−1 using only the data matrix X.

Let Xw , Ŝ
−1/2
0

(
X− X̄1⊤

N

)
be the whitened data,

where Ŝ0 is the sample covariance matrix of X and X̄ is the
vector of row means of X. In GraDe, the unmixing matrix
estimate is obtained by diagonalizing/jointly diagonalizing
one or more graph-autocorrelation matrices given as

Ŝk(W) =
1

N − k
(XwW

kX⊤
w), k = 1, . . . ,K (11)

i.e., by finding the orthogonal U which maximizes the objec-
tive function

K∑
k=1

∥diag(UŜk(W)U⊤)∥2. (12)

The unmixing matrix estimate is then Γ̂ = UŜ
−1/2
0 . A fast

algorithm for the joint diagonalization is available in [14] and
applicable for the case when the shift matrix W is chosen to
be symmetric, or the graph-autocorrelation matrices are sym-
metrized. The unmixing matrix estimate for an inaccurately
learned adjacency matrix W is denoted as Γ̂(W).

We will use the following (see [15] for details) asymp-
totic result, derived in the context of the second-order blind
identification (SOBI) estimator [16], for an unmixing matrix
estimate Γ̂ obtained using joint diagonalization of matrices
Ŝ1, . . . , ŜK . When Ω = IP×P , for i ̸= j, we have

√
N (γ̂ii − 1) = −1

2

√
N ([Ŝ0]ii − 1) + oP (1) (13)

and

√
N γ̂ij=

∑
k(λki − λkj)(

√
N [Ŝk]ij − λki

√
N [Ŝ0]ij)∑

k(λki − λkj)2

+ oP (1), (14)

where λki , E{[Ŝk]ii}, and oP (1) stands for negligible
terms. The diagonal elements of Γ̂ do not depend asymptot-
ically on Ŝ1, . . . , ŜK , and thus, in the case of graph signals
ICA, do not depend on W. Therefore, the sum of the off-
diagonal elements

SOV(Γ̂(W)) = N
∑
j ̸=i

var(Γ̂(W)ij) (15)
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can be used when comparing the separation efficiencies
induced by different choices of W. We will use the ra-
tio of the sums given as R(W1,W2) = SOV(Γ̂(W1))/

SOV(Γ̂(W2)). We have calculated the variances for the
GraDe estimate with K = 1, when the independent com-
ponents are GMA(1) signals and the adjacency matrix is
symmetric and unweighted, which corresponds to the case of
undirected and unweighted graphs.

5. SIMULATION STUDY

The performance of the GraDe method is studied here when
only W (imperfect version of A) is known. The performance
is measured using the minimum distance (MD) index [17]

D(Γ̂) , 1√
P − 1

inf
C∈C

∥CΓ̂Ω− IP×P ∥ (16)

where C , {C : each row and column of C has exactly one
non-zero element}. The MD index takes values between zero
and one, and it is invariant with respect to the mixing matrix.
Also, there is a connection between the minimum distance
index and the sum of variances of the off-diagonal elements
when Ω = IP×P , given as

N(P − 1)E{D(Γ̂)2} → SOV(Γ̂), as N → ∞. (17)

For two sets of estimates, W1 and W2, we define

R̂(W1,W2) = ave{D(Γ̂(W1))
2}/ave{D(Γ̂(W2))

2}.

Equation (17) implies that R̂(W1,W2) ≈ R(W1,W2) for
large N .

Table 1. R(A,W) for A with α = 0.05 and W given by
ϵ1 = 0, 0.1, . . . , 0.5 and ϵ2 = 0, 0.01, . . . , 0.05.

ϵ1\ϵ2 0 0.01 0.02 0.03 0.04 0.05
0 1.00 0.81 0.68 0.58 0.51 0.45

0.1 0.88 0.71 0.58 0.49 0.43 0.38
0.2 0.77 0.60 0.49 0.41 0.35 0.30
0.3 0.66 0.50 0.40 0.33 0.28 0.24
0.4 0.56 0.41 0.31 0.26 0.21 0.18
0.5 0.46 0.31 0.24 0.19 0.15 0.13

Table 2. R̂(A,W) from 1000 repetitions for α = 0.05 and
ϵ1 = 0, 0.1, . . . , 0.5 and ϵ2 = 0, 0.01, . . . , 0.05.

ϵ1\ϵ2 0 0.01 0.02 0.03 0.04 0.05
0 1.00 0.81 0.67 0.56 0.48 0.44

0.1 0.88 0.65 0.56 0.47 0.43 0.35
0.2 0.76 0.59 0.46 0.40 0.34 0.29
0.3 0.62 0.46 0.37 0.32 0.27 0.25
0.4 0.52 0.37 0.29 0.25 0.21 0.20
0.5 0.43 0.31 0.25 0.20 0.17 0.16

0.00 0.05 0.10 0.15 0.20 0.25 0.30
α

R
(A

,W
)

ε1 = 0.05, ε2 = 0.025

ε1 = 0.1,   ε2 = 0.05

ε1 = 0.2,   ε2 = 0.075

ε1 = 0.4,   ε2 = 0.1

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Fig. 1. Ratio of the theoretical variances as a function of α
for four choices of (ϵ1, ϵ2).

The estimate Γ̂(A) (with true A) is a natural benchmark
to which we compare the estimates obtained using W. The
matrix W is generated from A using the error model (2) with
different values of ϵ1 and ϵ2. In Tables 1 and 2, the values of
R(A,W) and R̂(A,W) are shown, respectively, when A is
1000× 1000 matrix with α = 0.05 and there are p = 4 inde-
pendent components generated from (6) with θ = 0, 0.2, 0.4
and 0.6. For Table 2 we generate 1000 datasets for each
pair (ϵ1, ϵ2) and always generate a new W. In Table 1, the
sum of variances is an average for ten W’s, even though
SOV(Γ̂(W)) is quite stable for fixed ϵ1 and ϵ2. The sim-
ulation results match the theoretical values quite well. The
results show that GraDe is more sensitive to adding irrelevant
edges than missing the real edges.

For four selected pairs (ϵ1, ϵ2), Fig. 1 plots R(A,W) as
a function of α that is used in creating A. The curves dis-
play the averages of ten values given by different W’s. As
expected, the efficiency loss caused by inaccuracy in the ad-
jacency matrix is the larger, the more sparse the graph is.

6. CONCLUSION

Error models for graph adjacency matrix learning have been
introduced. The models are based on Erdös-Rényi model,
which can be viewed as an analog to the Gaussian error/noise
model in the traditonal signal processing, and therefore,
should play a fundamental role in developing GSP algo-
rithms. Also, graph moving average signal model have been
discussed and statistically studied by deriving its covariance
structure and graph autocovariance. Finally, the graph er-
ror models and the GMA signal model have been applied
in a graph ICA example, where we used simulations and
theoretical results to demonstrate the graph error effect.
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