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ABSTRACT

In this paper we consider the problem of rumor source de-
tection in a network. Our main contribution is an efficient
Belief-Propagation-based (BP) algorithm to compute the joint
likelihood function of the source location and the spreading
time for the general continuous-time Susceptible-Infected
epidemic model on trees. As a result, many probabilistic
detection algorithms, including the joint maximum likelihood
estimator, can be implemented with time complexity being
nearly linear in the product of the size of the graph and the
effective range of the spreading time. This is in sharp contrast
to the widely employed discrete-time epidemic models where
the complexity in computing the likelihood function of the
source location is exponential. To extend the BP algorithm
to general graphs, we propose a “Gamma Generated Tree”
heuristic to convert the original graph to a tree with heteroge-
neous infection rates over edges. Compared to state-of-the-art
methods, simulation results show that our algorithm provides
better estimates of the source when the graph topology is
similar to trees. As a byproduct, the spreading time can also
be estimated, which is useful in some applications.

Index Terms— Rumor Source Detection, Belief Propa-
gation, Maximum Likelihood Estimation, Social Networks

1. INTRODUCTION

Rumor source detection is an important problem in tracking
abnormal activities in networks, including rumors [1], dis-
eases [2] and computer virus [3]. Shah and Zaman [4, 5]
pioneered in the single source detection for the Susceptible-
Infected (SI) model on trees. They proposed the notion of
Rumor Center as the detected source and triggered plenty of
extensions such as locating double sources [6], boosting with
multiple observations [7] or temporal information [8], boost-
ing by finding confidence sets of sources [9], and evaluating
rumor centrality under sampling [10]. Besides, in [11,12], the
notion of Jordan Center was proposed to detect the source,
which was proved to be optimal for a sample-path-based ap-
proach. It also helped design algorithms for multiple sources
detections [13, 14]. Finally, the Dynamic Message Passing
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algorithm proposed in [15, 16] utilized cavity messages to ap-
proximate likelihood functions.

However, most previous works employ discrete-time epi-
demic models, in which computing the maximum likelihood
estimator (MLE) of the source requires enumerating over all
possible orders of the infection sequences, making the time
complexity exponential in the size of the graph [4,11]. Hence,
most previous works avoid deriving the exact MLE and em-
ploy other heuristics, as seen above. Meanwhile, to fully uti-
lize the information about rumor spreading contained in the
epidemic model, it is critical to overcome the computational
barrier of the likelihood function.

The key observation made in this paper is that, for a
continuous-time epidemic model, once we jointly consider
the spreading time ¢ and the source location s, the computa-
tion of the joint likelihood function can be done in polynomial
time. This is in sharp contrast to the discrete-time models. To
elaborate, let us consider the case where the underlying net-
work is a tree, and assume that the infection graph G7 is bro-
ken into two infection sub-trees %(1) and 91(2), both rooted
at the source s. Due to the mutual independence of the spread-
ing times across all edges, the joint likelihood can be factor-
ized into two parts: P(Gyls,t) = P(%(1)|5,t)IP’(<7I(2)|s,t).
Thereby, recursively factorizing probabilities leads to a Belief
Propagation [17] algorithm for computing the joint likeli-
hood, which reduces time complexity.

Built upon the above key observation, our main con-
tribution is an efficient Belief Propagation (BP) algorithm
to compute the joint likelihood function of the source and
spreading time for general continuous-time SI model on
trees. As a result, many probabilistic detection algorithms
can be implemented efficiently. In particular, the joint MLE
is attained with time complexity O(nL log L), where n is the
number of infected nodes and [0, L] is the effective range of
time considered in finding the joint MLE. For general graphs,
we utilize the Gamma distribution to model every infection
time, proposing the Gamma Generated Tree (GGT) heuristic
to transform the graph into a spanning tree and then apply the
BP algorithm. Simulation results on random trees and Erdos-
Rényi (ER) graphs show that the BP algorithm outperforms
Rumor Center, Jodan Center and Dynamic Message Passing.
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2. PROBLEM FORMULATION

Suppose the underlying network G = (V, ) is a connected
simple graph. At time ¢{ = 0, an infection, following the SI
model, starts from source s € V.

In the SI model, there are two types of nodes: Susceptible
and Infected. An infected node can infect its susceptible
neighbor. Once a node is infected, it cannot become sus-
ceptible again, and hence the transition of state is S — [
one-way. For general SI model, the time 7;; it takes an in-
fected node 7 to infect its susceptible neighbor j follows some
distribution P;;, and 7;;’s are mutually independent across all
(i,7). A special case is the uniform-rate SI model, where
Tij ™~ EXp(A)Z

Pr(r; <t)=1—e™ V(ij) €&

Now suppose an infection in G starts from s at time 0.
At an unknown time ¢, we observe a realization, denoted as
Gr = (Vr,&r), of the infection random graph G§(t), which is
the random subgraph of GG composed of all infected nodes and
the edges between them. Given underlying network structure
G and infection graph G, we aim to compute L(v,t|G),
the joint likelihood function of the source location and the
spreading time (v, t) given observation Gy, where

L(v,t|Gy) £ Pr(Gi(t) = Grls = v, t),

so that statistical estimation can be carried out. A particularly
estimator we would like to use is the joint maximum likeli-
hood estimator (JMLE) of source and spreading time:

(8)mLE, Eyvmie) = argmax  L(v,t|Gy). (1)
(v,t)EVXRy

3. RECAP OF PREVIOUS WORKS

Instead of deriving the true MLE, previous works focus on
heuristics to implement efficient estimators, leaving gaps to
optimality. Below, a short recap is presented.

Rumor Center Sg is defined as:

$r = argmax R(v,Gy),

R(v,Gr) = it I1 \91«)\7
vEVT

ueyy

where |.7,7| is the number of nodes in the subtree rooted at
u when v is the source and R(v, G) counts the number of
infection sequences rooted at v. Besides, Jordan Center 5 is
defined as
§; = argmin max d(s,u),
sey; Uu€Vr

where d(s,u) is the minimum number of hops from s to
u. Finally, Dynamic Message Passing algorithm computes
P,(i,t), the estimate of the probability of a node i being
infected at time ¢ if the source is v, which is the exact proba-
bility if the underlying network is a tree and an approximation

otherwise. Then, it take P(G|v,t) as the approximation of
the true likelihood function:

P(Grlv,t) = [] Bu(it) J] (1= Pu(i,t))

i€Vr J¢Vi

From the definitions above, we see that Rumor Center and
Jordan Center only consider the information from Gy, so in-
formation from the locations of susceptible nodes, or equiva-
lently, side information from V' \ V, is ignored. On the other
hand, Dynamic Message Passing approximates the joint dis-
tribution by the product of marginal distributions, so it par-
tially ignores the dependencies among marginal distributions,
or equivalently, the structure of G;. To sum up, there is a
dilemma between exact computation and heuristic: the for-
mer is prohibited by high complexity and the latter is subject
to lost of information.

4. MAIN RESULTS

We propose an efficient algorithm to compute the exact like-
lihood functions, which fixes the issues mentioned above.

4.1. A Toy Example

We begin with a toy example of SI model (depicted in Fig-
ure 1) to illustrate how to derive the likelihood function
L(s,t|Gr) given 7;; ~ P;;. Suppose A is the source, B got
infected at time 7 ~ P4p, and at time ¢, we observe (.
Define message m;_; as:

Definition 1 m;_,; is the probability that at time t, if j is
the source and infected, j causes the result of infection in the
subtree rooted at 1.

(b)

Fig. 1: A toy example for L(s,t|G). A is the source, B got
infected at time 7, C' is infected, and D is not infected. The
scenario in (a) can be formulated as (b).

Then, L(s,t|G;) = mp_, 4 denotes the probability that if
A is the source and infected, at time ¢, A causes B infected,
C infected and D susceptible. In this way, we have the form
of Belief Propagation as follows: (x denotes convolution)

me—p = Fpc(t) ; mpop=1—Fpp(t)
mp—a = (mcspmp—s)(t) * fa(t),

where F;(t) and f;;(t) are the CDF and PDF of P;;.
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4.2. Belief Propagation Algorithm

The toy example illustrates how the overall likelihood func-
tion can be computed using a Belief Propagation algorithm.
Below, the general algorithm is described.

Algorithm 1 Belief Propagation For Single Source

Require: underlying network G and infection graph G
1: Find infected/susceptible boundary nodes.
2: For each boundary node 7 and its parent j, ¢ passes to j
Fj;(t) if ¢ is infected or 1 — F)j;(t) if ¢ is susceptible.
3: while some nodes is unfinished do

4:  for all ¢ is unfinished do

5 if 7 gets all neighboring messages then

6: 1 1s finished

7 else if ¢ gets all but a neighbor j’s message then
8 Mi—j = mkﬁi(t)) * f5i(t)

keNei(i)\{s}

9: end if
10:  end for

11: end while

Here F)j;(t) and f;;(¢t) are the CDF and the PDF of
the time it takes j to infect its susceptible neighbor . For
uniform-rate SI model, Fj;(t) = 1 — e *" and f;;(t) =
Ae~ . Nei(i) denotes the neighbors of node 7. Node i is a
boundary node if either of the following is true:

e i € Vr and its degree deg(i) = 1 on both G and G.
e i € V\Vy. i connects to anode j € V.

The algorithm starts from boundary nodes. A boundary node
passes CDF to its parent if it is infected or complementary
CDF if it is susceptible. Then, node 7 will pass a message to
its neighbor j if ¢ gets all but j’s message. At line 8, all mg_,;
are multiplied together because they are independent when i
is the source. In addition, the resulting message after multip-
ilcation is convolved with f;;(t) because passing the message
is equivalent to the summation of random variables; that is,
the time it take ¢ to cause the result of infection on the sub-
tree rooted at ¢ pluses the time it takes j to infect ¢. Finally,
the algorithm stops when all messages reach their destina-
tions. Then by definition, [ jeNei(i) Mj—i is the likelihood
that when ¢ is the source, at time ¢, ¢ causes the result of the
infection on each of its subtrees.

Suppose all messages are stored and computed numeri-
cally. Let L be the maximum number of points to store a mes-
sage, n be the number of infected nodes, and D be the max-
imum degree. Note L is proportional to the range of time in
which the estimator searches for the estimated spreading time.
Then, multiplications of messages need O(n(D — 1)L) since
there are O(n(D — 1)) of them and each one needs O(L).
Convolutions with PDFs need O(nL log L) because there are
O(n) of them and each one takes O(L log L) if implemented
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by FFT (Fast Fourier Transformation). Thus, if L > D, then
the time complexity of Algorithm 1 is O(nLlog L).

Finally, with the likelihood functions at hand, the next
step of IMLE is to find the pair (v, t) that maximizes L(v, t|Gy).
Note that searching for all pairs of (v, t) has a natural upper
bound O(nL). Hence the overall complexity of the Belief
Propagation algorithm is O(nL log L).

4.3. Risk Minimization

In some scenarios, the loss functions other than the 0-1 loss
may be of practical interested. For example, the distance error
of the source d(s, §) and the absolute error of the time |t — £|.
Hence it is reasonable to consider a framework to achieve the
minimization for general risk functions.

First, assume that we are interested in a joint risk. Let
£(s,t, §,f) be the loss function with respect to the true pa-
rameters (s,t) and their estimates (8,%). Suppose the prior
distributions of s and ¢ are uniform in V; and [0, T']. Then the
expected loss, or the risk, is proportional to

i(gj):/o > v, 7,8,1)L(v, 7|Gy)dr

vEVY

The estimates (¢, ;) that minimize the joint risk is obtained
by minimizing I(3, ).

On the other hand, suppose we are interested in minimiz-
ing risks separately. Let (s, 3) and .Z(t, %) be the losses of
the source and spreading time. Then the Iterative Risk Min-
imization allow us to minimizing them iteratively until con-
vergence. Note that we call Algorithm 2 Iterative Minimum
Distance Estimator (IMDE) when £(s, §) is the distance error
in hops and .Z(t, 1) is the absolute error.

Algorithm 2 Iterative Risk Minimization

Require: infection graph G; = (Vr, &), likelihood function

L(-,-|Gy), 8, t
1: repeat
2 §=argmin Y £(i,v)L(i,t|G)
vEVr i€V
3 {=argmin fOT L(1,t)L(8,7|Gr)dr
t€[0,T)

4: until convergence

4.4. GGT Heuristic For General Graph

As suggested in [4], the estimation on general graphs can be
done by constructing a Breadth-first Search (BFS) spanning
tree and then applying the source detection algorithm. How-
ever, the BFS heuristic is not enough for our BP algorithm be-
cause the transmission on the spanning tree is heterogeneous.
Thereby, the infections on the original graph and the span-
ning tree are both modeled by the non-uniform-rate SI model:



V(j,v) € €, Tju ~ Exp(Ajy). We propose the Gamma Gen-
erated Tree (GGT) heuristic to construct a weighted spanning
tree, with weights on edges representing infection rates.

The spirit of GGT is to use the Gamma distribution to
model every node’s infection time (the time when the node
got infected). First, we want to compute the model of a the
infection time given candidate parents. This process is called
Gamma Aggregation. Then apply Gamma Aggregation when
constructing spanning tree, as shown in Algorithm 3.

Assume node 4 has candidate parents p;, 1 < j < n,
whose infection times are modeled as Tp].. Then the infection
from p; achieves 7 at time ij + Exp(Ap,:), which is further
modeled by a Gamma r.v. Tz/)j with mean E[T},,] +1/),,; and
variance Var[ij} +1/ )\123_7,1-. The Gamma Aggregation posits

that for node ¢, its infection time is modeled as TZ

~ k -k

T, BB, el
T:min{TZ’,j: 1<j<n}

Finallyi the ~GGT peuris:[ic is shown below. Note thgt at
line 6, E[T; — Tyar,|Ti > Tpar,] has a closed form. If T; ~

['(k1,71), Tpar, ~ I'(k2,72), then it equals to

kl + k2 _ kZ(Tl + T2) I7>2/(r1+r2)(k2 + ]-» kl) (3)

et 172 Ly j(ry 47y (R2, k1)

where I (a, b) is the regularized incomplete beta function.

Algorithm 3 Gamma Generated Tree (GGT)

Require: Initial point s.

1. I= {8}

2: while any infected or boundary node is not searched do

32 Picki=argmax ). Aj,

vEV\L  jeInNei(v)
: Compute T; by Gamma Aggregation.
5:  Pick par; = argmin E[T,]
veINNei(7)

6:  Tree.insert(i, par;, 1/E[T; — Tpar |T; > Tpar,])
7: I=1uU {Z}
8
9

: end while
: return Tree

5. SIMULATION RESULTS

We present simulation results on Random Tree RT'(n) and
Erdos-Rényi model ER(n,p), where n is the number of
nodes and p is the connection probability in ER model. The
Random Tree we used is constructed by: (1) Initialize with
a single node. (2) Each new node connects to one of the ex-
isting nodes with equal probability. The simulation is run in
uniform-rate(1) SI model until half of the nodes are infected.

Distance Error of Source On Random Tree RT(n)

—&— BP (JMLE)
IMDE

Average Distance Error (in hops)

200 300 400 500 600 700 800 900 1000
Number of Nodes (n)

(a) Random Tree RT'(n)

Distance Error of Source On ER(1000,p) Model

—e— RC+BFS
JC

—— DMP
45° —4— BP+GGT

Average Distance Error (in hops)

25 , , , , ,
3 4 5 6 7 8 9
Mean Degree (999*p)

(b) ER model ER(1000, p)

Fig. 2: Performance on Random Tree and ER model.

From Figure 2, the BP algorithm outperforms others on
RT(n) and ER(1000,p) when mean degree < 7. Also,
the IMDE algorithm works slightly better than the JMLE on
RT(n) since IMDE’s objective is to minimize the distance
error. Because ER(1000,p) is similar to a tree when p is
small, we conclude that the more similar the graph is to a
tree, the more powerful the BP algoithm will be.

6. CONCLUSION

This paper addresses the rumor source detection in a gen-
eral setting. To circumvent the issues in previous works, the
problem is formulated as a joint maximum likelihood estima-
tion (JMLE) over source and spreading time. For SI model
on trees, we propose Belief Propagation algorithm (BP) to
achieve the JMLE in time O(nL log L). For general graphs,
we design the Gamma Generated Tree heuristic. Finally, the
simulation concludes that the more similar the graph is to a
tree, the more powerful the BP algoithm will be. The future
directions could be to discuss the time error, practical risk
functions and other infection models.
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