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ABSTRACT
The least-mean-magnitude-phase (LMMP) algorithm is

useful for complex-valued signal processing applications
where precise control of magnitude and/or phase error in-
formation can provide improved estimation performance.
Because it is a gradient procedure, however, the conver-
gence speed of the algorithm can be limited for correlated
input signals. In this paper, we derive affine-projection least-
mean-magnitude-phase (AP-LMMP) algorithms based on an
a posteriori update relation that have improved convergence
performance over that of the LMMP algorithm without signif-
icant increases in complexity. We employ different nonlinear
lookahead approaches depending on the projection order to
compute the magnitudes of the a posteriori output signals and
use these to implement the coefficient updates. Simulations
indicate that AP-LMMP algorithms can outperform other
algorithms in situations where their use is appropriate.

Index Terms— Adaptive algorithms, adaptive filters,
adaptive signal processing, adaptive systems, algorithm de-
sign and analysis.

1. INTRODUCTION

The complex least-mean-square (CLMS) algorithm extends
the well-known LMS adaptive algorithm to complex-valued
signals [1]. It is used in applications where algorithm sim-
plicity is paramount and complex-valued data representations
are relevant, such as in communications and array processing.
In the CLMS algorithm, a single step size parameter µ is used
to control the algorithm’s performance. There are a number
of practical situations where the CLMS algorithm is unable
to adequately account for the uncertainties associated with the
input and desired response signals. For example, carrier offset
in communications tasks leads to phase uncertainties that can
hamper the CLMS algorithm’s performance [2, 3]. In [4], the
least-mean-magnitude-phase (LMMP) algorithm was devised
to address such situations. The LMMP algorithm is given by

wk+1 = wk+µp,k

(
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|dk|
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)
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where the vector wk contains the L adaptive coefficients at
time k, wk+1 is the updated coefficient vector, dk is the de-
sired signal sample, and xk is the L-element input signal vec-
tor. In the algorithm, µm,k and µp,k are the magnitude and
phase step sizes, respectively, at time k. By tuning µm,k and
µp,k, the LMMP algorithm can provide better performance
than CLMS by appropriately emphasizing either the ampli-
tude error or phase error of the desired signal within the coef-
ficient updates. A stability analysis of the normalized version
of the above algorithm was recently provided in [5].

As both CLMS and LMMP are gradient-based, they can
suffer from poor performance when the input signal elements
in xk are correlated. Hence, it is desirable to develop modi-
fications to address this input signal correlation structure. In
[6], extensions of the CLMS algorithm were developed that
can be viewed as complex-valued extensions of the affine pro-
jection algorithm for real-valued signals [7]–[11]. Affine pro-
jection algorithms employ N constraints on the a posteriori
output errors, where N � L, and result in algorithms whose
computational complexities are approximately 2NL or less,
depending on the shift-input structure of xk. While useful, the
algorithms in [6] do not directly control the amplitude error or
phase error as does the LMMP algorithm. Affine projection
extensions of the LMMP algorithm have not been explored in
the literature.

In this paper, we derive extensions of the LMMP algo-
rithm that employ a posterori output signals within the coeffi-
cient updates themselves [12]–[15]. These algorithms can be
viewed as extensions of the LMMP algorithm to the afffine
projection algorithm class, with the additional constraint that
the algorithms are implicitly regularized. The resulting algo-
rithms have two step size parameters α and β that are easily
understood given their relation to LMMP’s step size param-
eters. Moreover, because they employ a posteriori updates,
they are robust for a wide range of parameter choices. The
algorithms employ novel lookahead mechanisms that enable
their simple implementations despite the nonlinearity of the
coefficient updates, resulting in different updates depending
on whether N = 1 or N > 1. Simulations in an array pro-
cessing example show the efficacies of the approaches.
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2. AFFINE PROJECTION LMMP ALGORITHM:
SINGLE DIMENSIONAL CASE

We first derive the affine projection LMMP algorithm based
on an a posteriori update forN = 1 corresponding to a single
constraint on the a posteriori output at time k. The a posteri-
ori version of the LMMP algorithm is defined as

wk+1 = wk + µp
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)
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yp,k = wT
k+1xk, (4)

where yp,k is the a posteriori output that depends on the cur-
rent input signal vector xk and the updated coefficient vector
wk+1. Note that the above relation is not an update per se,
as the right-hand-side requires the updated coefficient vector
which is not generally available prior to the update. We can
develop a mathematically-equivalent implementation of the
above relation that allows wk to be updated at each k. This
realizable version uses the update relation to develop a looka-
head value for the magnitude of yp,k, from which an update
relation can be derived. This version of the algorithm has a
remapped form of the step size parameters, defined by

β =
1
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µp

µm
= µpβ. (5)

With these choices, we can rewrite the a posteriori update as
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To determine this implementation, we first pre-multiply
both sides of (6) by xT to obtain
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Moving the terms that depend on yp,k to the left-hand side,
followed by taking absolute values of both sides, yields∣∣∣∣(1 + ||xk||2
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Now, if

β >

(
(1− α) |dk|

|yp,k|
− 1

)
||xk||2, (9)

then, we can simplify the above relation to

|yp,k| =
|βyk + αdk||xk||2|+ (1− α)|dk| · ||xk||2

β + ||xk||2
.(10)

Eq. (10) gives us a way to compute |yp,k| from yk without
having to compute the updated coefficient vector wk+1.

Now, we rewrite the update relation in (6) as
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Finally, we apply the matrix inversion lemma to the matrix in
large brackets on the left-hand side of (12) to invert it on both
sides of (12). After simplification, the final update is
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Equations (2), (10), and (13) prove the implementation of the
a posteriori relation in (3).

Remark 1: If the values of |yk| and |yp,k| are not too differ-
ent, then the a posteriori LMMP algorithm is similar to the
original LMMP algorithm with time-varying step sizes
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Thus, the new algorithm has a similar form to that of the orig-
inal version.

Remark 2: We can view β as a type of relaxation parameter
that is similar to regularization in other gradient-type algo-
rithms. Values of β close to zero yield faster convergence of
the magnitude error. As β becomes large, |yp,k| approaches
|yk| such that there is less distance between the a priori and
a posteriori outputs. Moreover, it has been found via simula-
tion that the ratio β/α controls the steady-state misadjustment
in situations where the system can model the desired signal
accurately. From numerical studies, we have found a good
relationship between β and α in such situations to be

β

α
≈ NE{||xk||2} (16)

where N = 1 for the single-dimensional projection update.

Remark 3: The parameter α determines the relative influ-
ence of the magnitude error versus the phase error in the AP-
LMMP update. As α is defined as a ratio of step sizes, it
is dimensionless, and its value should be considered along
an exponential scale. Choosing α = 0.1 causes magnitude
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errors to dominate the algorithm’s behavior by roughly 10:1
with respect to phase errors, whereas α = 10 similarly causes
phase errors to dominate the algorithm’s behavior. The choice
α = 1 corresponds to the NLMS algorithm with regulariza-
tion parameter β. The choice of α should be made with regard
to the overall goal of the AP-LMMP algorithm in the chosen
application, considering the tradeoffs between the relative ac-
curacy of magnitude and phase information contained within
dk and the competing goals of fast convergence, low steady-
state misadjustment, and adequate tracking in time-varying
situations. Moreover, while stability of the algorithm has not
been proven, we have observe robust (non-divergent) behav-
ior in numerical simulations for all β > 0 and choices of α in
the range 0.001 < α < 1000.

Remark 4: There is an implementation issue with regard to
|yp,k| computed using (10). It turns out that the positivity of
the lookahead value is not guaranteed for all dk, yk, ||xk||2,
α, and β, although (a) such situations appear to occur ex-
tremely rarely in practice and (b) they do not appear to cause
anomalous behavior. Even so, such situations indicate that
the a posteriori LMMP algorithm is not well-defined at such
time instants. In such cases, we resolve the issue as follows:
Whenever |yp,k| computed by (10) is negative for that par-
ticular k, we use the approximate version of the a posteriori
LMMP algorithm given by (1), (14), and (15), which is sim-
ply the update in (13) where |yk| replaces |yp,k| wherever the
latter value appears. This approach preserves the general form
of the update without ignoring the data that is being presented
to the algorithm at particular time instants.

3. AFFINE PROJECTION LMMP ALGORITHM:
MULTIDIMENSIONAL CASE

We now consider the multidimensional extension of the a pos-
teriori LMMP algorithm in the previous section for arbitrary
N . Let

Xk = [x1,k x2,k · · · xN,k] (17)
dk = [d1,k d2,k · · · dN,k]

T (18)
yk = XT

kwk (19)
yp,k = [yp,1,k yp,2,k · · · yp,N,k]

T = XT
kwk+1 (20)

be the multidimensional extensions of the respective quan-
tities in the LMMP algorithm, and define the complex
modulus operator on an arbitrary-sized matrix as |dk| =
[|d1,k| · · · |dN,k|]T , for example.

To begin our derivation, define the (N ×N) diagonal ma-
trix Fk as in Eq. (29) in Table 1. Then, the a posteriori affine
projection LMMP algorithm is defined by the relation

wk+1 = wk +
1

β
X∗

k

(
αdk − FkX

T
kwk+1

)
. (21)

As before, (21) is not in the form of an update, as wk+1 ex-
plicitly appears on the right-hand-side as well as in the entries
of Fk through their dependence on the entries of |yp,k|.

Assume for the time being that we have a way to compute
all N values of |yp,k| used within the matrix Fk. Then, we
can rewrite the above relation as[

I+X∗
k

(
1

β
I

)(
FkX

T
k

)]
wk+1 = wk +

α

β
X∗

kdk, (22)

and by using the matrix inversion lemma approach, we can
invert the matrix premultiplying wk+1 to yield the relation
shown in Eq. (30) in Table 1. Thus, the affine projection
version of the algorithm is available so long as we have a
strategy for computing the entries of Fk. We now consider a
strategy for computing the values in |yp,k| needed to compute
the diagonal entries of Fk.

Using the update relation in (21), we pre-multiply both
sides of this relation by XT

k to obtain

yp,k = yk +
α

β
XT

kX
∗
kdk −

1

β
XT

kX
∗
kFkyp,k, (23)

which we can modify via some simple algebra to obtain(
β +XT

kX
∗
k

)
yp,k = βyk + αXT

kX
∗
kdk

+ (1− α)XT
kX

∗
k|Dk|sgn(yp,k)(24)

where |Dk| is a diagonal matrix whose mth diagonal entry is
|dm,k| and sgn(y) normalizes the complex-valued elements
of its argument to individual unit lengths, keeping their phase
angles.

At this point, there is no simple way to compute the en-
tries of |yp,k| as all of the values are coupled in the relation
above, and one cannot perform the same operations using the
modulus operation as was done in the N = 1 case. As such,
we resort to a nonlinear iterative approach to numerically es-
timate the entries of yp,k. Let y(i)

p,k denote the ith iteration

of this approach, and set y(0)
p,k = yk Then, we update y

(i)
p,k

as shown in Eq. (28) in Table 1, where the N -dimensional
vector gk and (N × N) matrix Hk are defined in Eqs. (26)
and (27), respectively, and γ is a relaxation parameter. Note
that gk and Hk need only be computed once per k, and they
both share a common (N × N) matrix (βI + XT

kX
∗
k) that

only needs to be inverted once per k. Thus, the complexity of
this iterative approach to finding yp,k is of O(KN2), where
K is the number of iterations of the iterative approach. Thus,
for typical choices where the parameter vector length L obeys
both L � K and L � N , the overall update complexity is
[2NL+(K+2N)N2+O(KN)] not counting the computa-
tion of XT

kX
∗
k, which remains reasonable so long as both K

and N are not too large. Choosing γ = 0.5 and 5 ≤ K ≤ 10
yields reasonable behavior. The choice of N is governed by
the input signal correlation.

Once the estimate of yp,k is found, we calculate the en-
tries of |yp,k| and use these to compute Fk in the update in
(21). Alternatively, one can avoid the iterative approach to
computing the entries of y(i)

p,k and approximate this by choos-

ing K = 0 which sets y(K)
p,k = yk, using the a priori output
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yk = y
(0)
p,k = XT

kwk. (25)

If K > 0, do
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kX
∗
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)−1 (
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∗
kdk

)
(26)

Hk = (1− α)
(
β +XT

kX
∗
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)−1
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kX
∗
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For i = 1, 2, . . . ,K and γ = 0.5, do

y
(i)
p,k = (1−γ)y(i−1)

p,k + γ
[
gk+Hksgn

(
y
(i−1)
p,k

)]
(28)

end i
end if

Fk = diag

{
1+ (α−1) |d1,k|

|y(K)
p,1,k|

,. . .,1+(α−1) |dN,k|
|y(K)

p,N,k|

}
(29)

wk+1 = wk+X∗
k

(
βI+FkX

T
kX

∗
k

)−1
(αdk−Fkyk).(30)

For the approximate version, choose K = 0.

Table 1. Affine-projection least-mean-magnitude-phase algo-
rithm for projection order N ≥ 1.

values in the computation of the magnitude and phase errors
in the update. This approximate version has a complexity of
2NL + O(N3). Both versions of this algorithm for K = 0
and K > 0 are given in Table 1 and retain the structural sim-
plicity of the original affine projection algorithm.
Remark 5: The algorithm in Table 1 is guaranteed to main-
tain all entries of |y(K)

p,k | > 0 as they are obtained by complex
modulus operations. Even so, one should still avoid a divide-
by-near-zero situation in cases where any entry of |y(K)

p,k | is
small relative to its corresponding |dp,k| value. We have em-
ployed the test |y(K)

p,i,k| > 0.001|di,k| and replace the vector

y
(K)
p,k with yk if any one of these tests fails, similar to the

recovery mechanism used in the N = 1 algorithm version.

Remark 6: The choices of γ = 0.5 and K = 10 were de-
termined by experimentation but are justified as follows. For
these choices, the initial condition remaining in the a posteri-
ori output vector is reduced to approximately 2−10 or 60 dB
below its initial value, and errors in the a posteriori estimates
typically are between 20 dB and 70 dB below that of the errors
in ek = dk − yk. Thus, the errors in the a posteriori output
values are not dominant components in overall behavior.

4. NUMERICAL EVALUATIONS

The capabilities of the proposed methods are now explored
via numerical simulations. Consider anM = 10-element uni-
form linear array with uncorrelated complex Gaussian sensor
noise in which three 4QAM-modulated narrowband signals
with SNRs of 30, 20, and 10 dB are impinging on the array
at angles of 20, 25, and -45 degrees, respectively. Due to
carrier offset [17], the 4QAM constellations are rotating 18
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Fig. 1. Array processing example; see text for explanation.

degrees in the complex plane between snapshots. The sen-
sor signal snapshots are used as the input vector sequence xk.
We use the first 4QAM signal as the desired signal dk, and
implement five different beamforming algorithms, choosing
step size parameters to obtain the fastest convergence of the
signal-to-interference ratio (SINR) for each algorithm [16].
One thousand simulations are run and the results averaged.

Shown in Fig. 1 are the results of these evaluations. As
can be seen, the AP-LMMP algorithm with N = 4 performs
the best, providing the fastest convergence with the highest
final SINR. The standard affine projection algorithm has the
same convergence speed as AP-LMMP with N = 4 but can-
not achieve a high SINR as its parameters cannot be adjusted
to account for the carrier offset. The AP-LMMP with N = 1
and NLMS algorithms perform similarly, and both provide a
high steady-state SINR but a slower convergence speed rela-
tive to the N = 4-based algorithms. The static solution pro-
vided by least-squares is unable to extract the desired source
due to carrier offset. These results show the usefulness of
the multidimensional AP-LMMP algorithm to independently
manage amplitude and phase errors and simultaneously com-
pensate for input signal correlation in an adaptive estimation
task.

5. CONCLUSIONS

In this paper, we have described new algorithms for adap-
tive estimation of complex-valued signals that can be tuned
to emphasize amplitude or phase information in the training
data. The algorithms are simple and robust, employing a pos-
teriori updates that allow a wide range of tuning parameters
to be chosen. Novel methods for computing the magnitudes
of the a posteriori output values are provided. Simulations
show that the multidimensional algorithm has a fast conver-
gence speed and a high steady-state accuracy through its tun-
ing ability. The algorithms are useful for complex-valued sig-
nal processing tasks in communications and array processing.
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