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ABSTRACT

In this paper, we develop a kernel adaptive filter for quater-
nion data based on minimum error entropy cost function. We
apply generalized Hamilton-real (GHR) calculus that is appli-
cable to Hilbert space for evaluating the cost function gradi-
ent to develop the quaternion kernel minimum error entropy
(MEE) algorithm. The MEE algorithm minimizes Renyis
quadratic entropy of the error between the filter output and
desired response or indirectly maximizing the error informa-
tion potential. Here, the approach is applied to quaternions
for improving performance for biased or non-Gaussian sig-
nals compared with the minimum mean square error criterion
of the kernel least mean square algorithm. Simulation results
are used to verify the performance of the algorithm. Con-
vergence is very fast and is shown to out-perform existing
algorithms.

Index Terms— Adaptive filters, entropy, kernel least
mean square (LMS) algorithm, quaternions

1. INTRODUCTION

Quaternion domain allows us to represent three or four di-
mensional signals in convenient way. The quaternion algebra
reduces the number of parameters and computational com-
plexity . Areas such as computer graphics, pattern recognition
in images and motion tracking are significantly simplified us-
ing quaternions[1]-[5]. Some recent research results include
the development of linear and widely linear filters based on
quaternion data [1],[2] and the optimization in quaternion sys-
tems such as gradient learning algorithm [7]. The generalized
Hamilton-real calculus (GHR) for the quaternion data is pro-
posed in [6]. The GHR calculus simplified product and chain
rules and allows us to calculate the quaternion based gradi-
ent and Hessian of cost function efficiently and use them for
the learning algorithms. The quaternion reproducing kernel
Hilbert spaces and its uniqueness is established in [8]. These
provide a mathematical foundation to develop the quaternion
value kernel learning algorithms. The reproducing property
of the feature space replace the inner product of feature sam-
ples with kernel evaluation. The existence and uniqueness
of quaternion reproducing kernel Hilbert space (QRKHS)

provide a theoretical basis for kernel algorithms operating in
quaternion feature spaces. The quaternion kernel estimation
is an emerging field and some algorithms are developed in
quaternion domain [9]-[11]. The adaptive filtering cost func-
tion based on minimum square error (MSE) use only second
order statistics and does not capture the probability of error
distribution in the system. Another algorithm; Maximum
Correntropy is based on local criterion and only cares about
the local part of the error PDF falling within the kernel band-
width. When the error modes are far from the origin, they fall
outside the kernel bandwidth [16]. An information theoretic
alternative is using Minimum Error Entropy as cost function
and is expected to perform better with biased or non-Gaussian
signals compared to MSE criteria adaptive filters. The Min-
imum Error Entropy has higher complexity than Maximum
Correntropy but achieves robustness and efficiency by self
adjusting the localness of the weighting function based on the
error distribution [16]. The adaptive filter based on minimum
error entropy (MEE) criteria is studied in [12]-[14].

In this paper, we describe a quaternion kernel adaptive
filter based on minimum error entropy cost function that is re-
ferred to as the quaternion KMEE (QKMEE) algorithm. Sec-
tion 2 covers the background material, Section 3 contains the
algorithm derivation, Section 4 is simulation results and sec-
tion 5 concludes the paper.

2. BACKGROUND

2.1. Quaternions and Properties

Quaternions are a 4-D associative, noncommutative, normed
division algebra over the real numbers.The details about
quaternions and the GHR calculus can be seen in [6][7] and
[17].

2.2. Renyi Entropy and Parzen Window

Renyi’s entropy definition such as the order–α Renyi’s en-
tropy is defined as [12]

Hαpeq “
1

1´ α
log

ż 8

´8

pαe peqde (1)

4149978-1-5386-4658-8/18/$31.00 ©2018 IEEE ICASSP 2018



where α P R`zt1u and pe is probability distribution function
of random variable e.
We can define order–α information potential Vα as

Vαpeq “

ż 8

´8

pαe peqde “‖pe‖αα (2)

where‖.‖α is standard norm–α in Lα.
In practice the entropy function is not accessible since it is a
function of the pdf of relative random variable e. With α “ 2
the entropy can be estimated by using some specific method
such as the Parzen window which is a good estimation of the
order–2 Renyi’s entropy function. For a set of N statistically
independent random samples teiuNi“1 of random variable e,
the Parzen window computes the estimate of the probability
distribution function pe as

p̂epeq “
1

Nσ

N
ÿ

l“1

Kp
e´ el
σ

q “
1

N

N
ÿ

l“1

G?2σpe´ elq (3)

where K is the real value Gaussian Kernel and σ is the size
of kernel and G?2σ is defined as the following function

G?2σpe´ elq “
1

?
2πσ

expt´
pe´ elq

2

2σ2
u (4)

The estimation of information potential V̂ peq is given by

V̂ peq “
1

N2

N
ÿ

l1“1

N
ÿ

l2“1

G?2σpel1 ´ el2q (5)

The global solution of maximization of the V peq is the same
as global solution of V̂ peq with the Parzen window estimation
and the global solution is achieved when all related errors are
constant and the maximum value of V peq is shown by V p0q
or equally V̂ p0q “ 1?

2σ
.

Gaussian-based kernel for quaternion data may be ex-
pressed as

κσpX ´ Y q “
4

?
2πσ

expt
´1

2σ2
pXr ´ Yrq

2 ` pXi ´ Yiq
2`

pXj ´ Yjq
2 ` pXk ´ Ykq

2u

“
4

?
2πσ

expt
´1

2σ2
|X ´ Y |2u

where X and Y are quaternion numbers P H in form of
X “ Xr`iXi´jXj´kXk and Y “ Yr`iY i´jY j´kY k.
More details of the quaternion kernel is provided in [15].

Minimizing the error entropy can be done by maximizing
the error information potential cost function Jpnq in quater-
nion domain H which can be defined as

Jpnq “
1

N2

N
ÿ

i,j“1

Gq,
?

2σpepn´ iq ´ epn´ jqq (6)

where

Gq,
?

2σpei ´ ejq “
4

?
2πσ

expt´

∣∣ei ´ ej∣∣2
2σ2

u (7)

and ei and ei P H. Based on the error information potential
based cost function in quaternion domain we develop Quater-
nion Minimum Error Entropy algorithm in next section.

3. QUATERNION MINIMUM ERROR ENTROPY
ALGORITHM DERIVATION

For the quaternion kernel adaptive filter based on minimum
entropy (QKMEE) with quaternion data, the goal is to max-
imize the information potential cost function Jpnq (6) . The
filter can be expressed as yn = ă Φpunq ,wn ą , which also
can be written as

yn “ wH
n ϕn (8)

where ϕn= Φpunq and Φp.q is the kernel map to a quaternion
RKHS [15]. Maximizing the information potential cost func-
tion Jpnq (6) can be done with unconstrained optimization
algorithm such as gradient ascent algorithm.

wn`1 “ wn ` η∇w˚
n
Jpnq “ wn ` η

ˆ

BJpnq

Bwn

˙H

“ wn ` µ

ˆ

B
“
řN
l,t“1 expt´

|epn´lq´epn´tq|2
2σ2 u

‰

Bwn

˙H
(9)

where η is adaptation step size and µ “ η 1
N2

4?
2πσ

,
and epn´ lq = dpn´ lq ´ wH

n ϕn´l as posteriori errors for
each l : 1 ď l ď N .

To derive the gradient of cost function we define functions
f : HÑ H and gl,t : HÑ R as

fpxq “ exppxq (10)

gl,tpwnq “
|́epn´ lq ´ epn´ tq|2

2σ2
(11)

To simplify the notation for function gl,t in our derivative for
a given l and t, 1 ď lďN and 1 ď t ďN we define gpwnq “

gl,tpwnq “ ´
|epn´lq´epn´tq|2

2σ2 .
with the above notation the equation (9) can be written as

wn`1 “ wn ` µ

ˆ N
ÿ

l“1

N
ÿ

t“1

B
“

fpgl,tpwnqq
‰

Bwn

˙H

(12)

For a given l and t, the partial derivative can be calculated
with GHR chain rule as
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B
“

fpgl,tpwnqq
‰

Bwn
“
B
“

fpgpwnqq
‰

Bwn

“
ÿ

vPt1,i,j,ku

Bf

Bgv
Bgv

Bwn

(13)

Using HR derivative property and quaternion rotation, for
@v P ti, j, ku we can show that Bf

Bgv “ 0 . Suppose v “ i then

Bf

Bgi
“

1

4

` Bf

Bgr
´ i

Bf

Bgi
` j

Bf

Bgj
` k

Bf

Bgk

˘

“
1

4

`Bexppgq

Bgr
´ i
Bexppgq

Bgi
` j

Bexppgq

Bgj
` k

Bexppgq

Bgk

˘

“
1

4

`

exppgq ´ iiexppgq ` jjexppgq ` kkexppgq
˘

“
1

4

`

exppgq ` exppgq ´ exppgq ´ exppgq
˘

“ 0

(14)

And if v “ 1 then

Bf

Bg
“

1

4

` Bf

Bgr
´ i

Bf

Bgi
´ j

Bf

Bgj
´ k

Bf

Bgk

˘

“ exppgq

(15)

By substituting (14) and (15) in (13) we can simplify (13)
as follow

ÿ

vPt1,i,j,ku

Bf

Bgv
Bgv

Bwn
“ exppgq

Bg

Bwn
(16)

gpwnq “
|́epn´ lq ´ epn´ tq|2

2σ2

“
´1

2σ2
|epn´ lq ´ epn´ tq|2

“
´1

2σ2

“

pepn´ lq ´ epn´ tqqpepn´ lq ´ epn´ tqq˚
‰

“
´1

2σ2

“

pepn´ lq ´ epn´ tqqpe˚pn´ lq ´ e˚pn´ tqq
‰

“
´1

2σ2

“

|epn´ lq|2 `|epn´ tq|2 ´ epn´ lqe˚pn´ tq

´ epn´ tqe˚pn´ lq
‰

(17)

therefore by substituting (17) in (16) we can find partial
derivative of g using GHR calculus as below

Bg

Bwn
“
` ´1

2σ2

˘“B|epn´ lq|2

Bwn
`
B|epn´ tq|2

Bwn

´
Bepn´ lqe˚pn´ tq

Bwn
´
Bepn´ tqe˚pn´ lq

Bwn

‰

(18)

by substituting epn´ lq = dpn´ lq´wH
n ϕn´l in (18) and

using GHR calculus, we can compute each partial derivative
of (18) as

B|epn´ lq|2

Bwn
“
Bepn´ lqe˚pn´ lq

Bwn

“ epn´ lq
Be˚pn´ lq

Bwn
`
Bepn´ lq

Bw
e˚pn´lq
n

e˚pn´ lq

(19)

where

Be˚pn´ lq

Bwn
“ ´ϕHn´l

Bwn

Bwn
“ ´ϕHn´l (20)

and the second term of (19) can be calculated as

Bepn´ lq

Bw
e˚pn´lq
n

e˚pn´ lq “ ´
BwH

n ϕn´l

Bw
e˚pn´lq
n

e˚pn´ lq

“ ´wH
n

Bϕn´l

Bw
e˚pn´lq
n

e˚pn´ lq ´
BwH

n

Bw
ϕn´le˚pn´lq
n

ϕn´le
˚pn´ lq

“
1

2

`

ϕn´le
˚pn´ lq

˘H

“
1

2
epn´ lqϕHn´l

(21)

by substituting (20) and (21) in (19) we can obtain

B|epn´ lq|2

Bwn
“ ´

1

2
epn´ lqϕHn´l (22)

Using the same method, the other terms of (18) can be cal-
culated. By substituting all partial derivatives , we can sim-
plify (18) as below

Bg

Bwn
“
` ´1

2σ2

˘

ˆ

´
1

2
epn´ lqϕHn´l ´

1

2
epn´ tqϕHn´t

`
1

2
epn´ lqϕHn´t `

1

2
epn´ tqϕHn´l

˙

“
` 1

4σ2

˘“

epn´ lq ´ epn´ tq
‰“

ϕHn´l ´ ϕ
H
n´t

‰

(23)

Therefore by substituting (23) in (16) we can obtain

BJpnq

Bwn
“

N
ÿ

l“1

N
ÿ

t“1

B
“

fpgl,tpwnqq
‰

Bwn

“

N
ÿ

l“1

N
ÿ

t“1

ÿ

vPt1,i,j,ku

Bf

Bgv
Bgv

Bwn

“
` 1

4σ2

˘

ˆ

N
ÿ

l“1

N
ÿ

t“1

exppgl,tpwnqq

ˆ
“

epn´ lq ´ epn´ tq
‰“

ϕHn´l ´ ϕ
H
n´t

‰

˙

(24)
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Therefore the gradient of the cost function Jpnq can be
calculated based on the following equation

∇w˚
n
Jpnq “

ˆ

BJpnq

Bwn

˙H

“
` 1

4σ2

˘

ˆ

„ N
ÿ

l“1

N
ÿ

t“1

exppgl,tpwnqq

ˆ
“

epn´ lq ´ epn´ tq
‰“

ϕHn´l ´ ϕ
H
n´t

‰

H

(25)

by setting w0 “ 0 and replacing exp(g) with its kernel
equivalent κσ we can obtain filter output weight as

wn “ ζ
n´1
ÿ

p“0

N
ÿ

l“1

N
ÿ

t“1

ˆ

“

κσ
`

epp´ lq ´ epp´ tq
˘‰

ˆ
“

epp´ lq ´ epp´ tq
‰“

ϕHp´l ´ ϕ
H
p´t

‰

˙H
(26)

where ζ “ µ
?

2π{16σ “ η 1
4N2σ2 . By substituting the

weight update in the yn “ wH
n ϕn and using properties of

Quaternion Reproducing Kernel Hilbert Space (QRKHS) and
the ’kernel trick’ to replace the inner product of two vectors
with quaternion kernel κ̄σ̄ , we can simplify the equation in
kernel form as

yn “ ζ
n´1
ÿ

p“0

N
ÿ

l“1

N
ÿ

t“1

“

κσpepp´ lq ´ epp´ tqq
‰

ˆ
“

epp´ lq ´ epp´ tq
‰“

κ̄σ̄pup´l,unq ´ κ̄σ̄pup´t,unq
‰

(27)

4. SIMULATION RESULTS

The Quat-KMEE (QKMEE) algorithm was simulated for
a nonlinear channel with non-Gaussian noise versus Quat-
KLMS[15].The channel consisted of the quaternion filter,
i.e., zpnq “ g˚1 upnq ` g

˚
2 u

ipnq ` g˚3 u
jpnq ` g˚4 u

kpnq
`h˚1upn´ 1q ` h˚2u

ipn´ 1q ` h˚3u
jpn´ 1q ` h˚4u

kpn´ 1q
and nonlineraity, i.e.,
ypnq “ zpnq ` az2pnq ` bz3pnq ` vpnq

where vpnq is added non-Gaussian noise described later.
Coefficients g1, ..., g4, h1, ..., h4, a, b, and noise vpnq are
all quaternion valued. The coefficients used were a “

0.075 ` i0.35 ` j0.1 ´ k0.05, b “ ´0.025 ´ i0.25 ´
j0.05 ` k0.03, g1 “ ´0.40 ` i0.30 ` j0.15 ´ k0.45, h1 “
0.175 ´ i0.025 ` j0.1 ` k0.15, g2 “ ´0.35 ´ i0.15 ´
j0.05` k0.20, h2 “ 0.15´ i0.225` j0.125´ k0.075, g3 “
´0.10 ´ i0.40 ` j0.20 ´ k0.05, h3 “ `0.025 ` i0.075 ´
j0.05 ´ k0.05, g4 “ `0.35 ` i0.10 ´ j0.10 ´ k0.15, h4 “
´0.05´ i0.075´ j0.075` k0.175.

For the tests, both input upnq and noise vpnq were
formed using impulsive Gaussian mixture models to form
non-Gaussian signals [8]. The probability distributions used
were pupiq “ p0.85Np1.0, 0.01q ` 0.15Np3.0, 0.01qq
`ip0.40Np0.5, 0.01q`0.60Np2.5, 0.01qq`jp0.65Np3.5, 0.01q`
0.35Np1.5, 0.01qq`kp0.25Np2.0, 0.01q`0.75Np5.5, 0.01qq
pvpiq “ p0.90Np0.0, 0.01q ` 0.10Np1.0, 0.01qq
`ip0.70Np3.0, 0.01q`0.30Np0.5, 0.01qq`jp0.45Np1.0, 0.01q`
0.55Np4.5, 0.01qq`kp0.80Np0.5, 0.01q`0.20Np1.5, 0.01qq
where NpmN , σN q denotes the normal (Gaussian) pdf with
mean mN and variance σN . The Quat-KMEE and Quat-
KLMS simulation results for the nonlinear channel described
are shown in Fig. 1. The convergence analysis results will be
in future work and guided the choice of the parameters. The
parameters for the Quat-KMEE were η “ 0.35, σ̄ “ 2.24,
and σ “ 0.736, and for the Quat-KLMS η “ 0.35, σ̄ “ 2.24
were used. The results show improvement of Quat-KMEE
for modeling nonlinear channel when the input noise is non-
Gaussian compared with Quat-KLMS.
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Quat-KLMS
Quat-KMEE

Fig. 1. Quat-KLMS and Quat-KMEE for non-Gaussian signal

5. CONCLUSION

We have shown the derivation and demonstration of conver-
gence of a quaternion kernel adaptive algorithm based on
minimum error entropy. The algorithm is based on infor-
mation theoretic learning (ITL) cost function. The resulting
algorithm is the Quat-KMEE algorithm using GHR calculus.
A gradient is derived based on quaternion RKHS. Simulation
results show the convergence curve of the mean square error
of the new algorithm (QKMEE) versus the existing algorithm
(QKLMS). The algorithm’s convergence is very fast and out-
performs the existing one QKLMS but has higher complexity.
The QKMEE algorithm performed better with non-Gaussian
signals compared to QKLMS which is based on the MSE
criteria adaptive filters.
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