
FEATURE LMS ALGORITHMS

Paulo S. R. Diniz, Fellow, IEEE, Hamed Yazdanpanah, and Markus V. S. Lima

Universidade Federal do Rio de Janeiro
DEE-DEL/Poli & PEE/COPPE/UFRJ

P.O. Box 68504, Rio de Janeiro, RJ, 21941-972, Brazil

ABSTRACT

In recent years, there is a growing effort in the learning algo-
rithms area to propose new strategies to detect and exploit
sparsity in the model parameters. In many situations, the
sparsity is hidden in the relations among these coefficients
so that some suitable tools are required to reveal the potential
sparsity. This work proposes a set of LMS-type algorithms,
collectively called Feature LMS (F-LMS) algorithms, setting
forth a hidden feature of the unknown parameters, which ul-
timately would improve convergence speed and steady-state
mean-squared error. The key idea is to apply linear transfor-
mations, by means of the so-called feature matrices, to reveal
the sparsity hidden in the coefficient vector, followed by a
sparsity-promoting penalty function to exploit such sparsity.
Some F-LMS algorithms for lowpass and highpass systems
are also introduced by using simple feature matrices that re-
quire only trivial operations. Simulation results demonstrate
that the proposed F-LMS algorithms bring about several per-
formance improvements whenever the hidden sparsity of the
parameters is exposed.

Index Terms— adaptive filtering, LMS algorithm, fea-
ture matrix, lowpass system, highpass system

1. INTRODUCTION

The adaptive filtering algorithms are employed in several ap-
plications for at least five decades. In particular, the popu-
lar LMS algorithm, first introduced in 1960 [1, 2], has been
widely considered as the benchmark in the field. Elaborate
studies of the LMS algorithm were presented in [3, 4]. Also,
the LMS and its variants can be found to solve real prob-
lems including active noise control [5], digital equalizers [6],
continuous-time filter tuning [7], system identification [8],
among others.
In recent years, a number of adaptive filtering algorithms

exploiting the sparsity in the model coefficients by imposing
some constraints in the cost function were proposed [9–14].
This strategy allows the attraction of some coefficient values
to zero enabling the detection of the nonrelevant parameters
of the model. To the best of our knowledge, there is no work

exploiting the sparsity arising from linear combinations of the
unknown parameters in the adaptive filtering context.
In this paper, we introduce the feature LMS (F-LMS) fam-

ily of algorithms inducing simple sparsity properties hidden
in the parameters. The type of feature to seek determines the
structure of the feature matrix F(k) to be applied in the con-
straints of the F-LMS algorithm. In fact, a plethora of featured
algorithms is possible to be defined by applying smart com-
binations of feature matrices to the coefficient vector. In this
work, some simple cases are discussed whereas many more
advanced solutions will be exploited in future publications.
This work is organized as follows. Section 2 proposes

the F-LMS family of algorithms. Some examples of F-LMS
algorithms for systems with lowpass and highpass spectrum
are introduced in Section 3. Simulation results are presented
in Section 4 and the conclusions are drawn in Section 5.
Notation: Scalars are represented by lower-case letters.

Vectors (matrices) are denoted by lowercase (uppercase)
boldface letters. For a given iteration k, the weight vector and
the input vector are denoted by w(k),x(k) ∈ R

N+1, respec-
tively, where N is the adaptive filter order. The error signal
at the k-th iteration is defined as e(k) � d(k) −wT (k)x(k),
where d(k) ∈ R is the desired signal. The l1-norm of a vector
w ∈ R

N+1 is given by ‖w‖1 =
∑N

i=0 |wi|.

2. THE FEATURE LMS ALGORITHMS

Feature LMS (F-LMS) refers to a family of LMS-type algo-
rithms capable of exploiting the features inherent to the un-
known systems to be identified. These algorithms minimize
the following general objective function:

ξF-LMS(k) =
1

2
|e(k)|2

︸ ︷︷ ︸
standard LMS term

+αP (F(k)w(k))︸ ︷︷ ︸
feature-inducing term

, (1)

where α ∈ R+ stands for the weight given to the sparsity-
promoting penalty function P , which maps a vector to the
nonnegative reals R+, and F(k) is the so-called feature ma-
trix responsible for revealing the hidden sparsity, i.e., the re-
sult of applying F(k) to w(k) should be a sparse vector (in
the sense that most entries of the vector F(k)w(k) should be
close or equal to zero).
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The penalty function P can be any sparsity-promoting
penalty function that is almost everywhere differentiable in
order to allow for gradient-based methods. Examples of suit-
able functions are: (i) vector norms, especially the widely
used l1 norm [10,13]; (ii) vector norms combinedwith shrink-
ing strategies [9]; (iii) a function that approximates the l0
norm [11, 15].
The feature matrix F(k) can vary at each iteration and it

represents any linear combination that applied tow(k) results
in a sparse vector. In practice, F(k) should be chosen based
on some previous knowledge about the unknown system wo.
For instance, wo can represent a lowpass or highpass filter, it
can have linear phase, it can be an upsampled or downsam-
pled signal, etc. All these features can be exploited by the
F-LMS algorithm in order to accelerate convergence and/or
achieve lower mean-squared error (MSE).
The resulting gradient-based algorithms using the objec-

tive function given in (1) are known as F-LMS algorithms,
and their recursions have the following general form:

w(k + 1) = w(k) + μe(k)x(k)− μαp(k), (2)

where μ ∈ R+ is the step size, which should be small enough
to ensure convergence [4], and p(k) ∈ R

N+1 is the gradient
of function P (F(k)w(k)).

3. EXAMPLES OF F-LMS ALGORITHMS

From Section 2, it is clear that the F-LMS family contains
infinitely many algorithms. So, in this section we introduce
some of these algorithms in order to illustrate how some spe-
cific features of the unknown system can be exploited. For
the sake of clarity, we focus on simple algorithms and, there-
fore, we choose function P to be the l1 norm and the feature
matrix to be time-invariant F so that the cost function in (1)
simplifies to

ξF-LMS(k) =
1

2
|e(k)|2 + α‖Fw(k)‖1. (3)

As a consequence, the reader will notice that the computa-
tional complexity of the algorithms proposed in this section
is only slightly superior to the complexity of the LMS algo-
rithm, as the computation of p(k) required in (2) is very sim-
ple (does not involve multiplications or divisions).

3.1. The F-LMS algorithm for lowpass systems

Most systems found in practice have their energy concen-
trated mainly in the low frequencies. If the unknown system
has lowpass narrowband spectrum, then its impulse response
wo is smooth, meaning that the difference between adjacent
coefficients is small (probably close to zero).
The adaptive filtering algorithm can take advantage of this

feature present in the unknown system by selecting the feature

matrix properly. Indeed, by selecting F as Fl, where Fl is a
N ×N + 1 matrix defined as

Fl =

⎡
⎢⎢⎢⎣

1 −1 0 · · · 0
0 1 −1 · · · 0
...

. . . . . .
0 0 · · · 1 −1

⎤
⎥⎥⎥⎦ (4)

and ‖Flw(k)‖1 =
∑N−1

i=0 |wi(k) − wi+1(k)|, the optimiza-
tion problem in (3) can be interpreted as: we seek for w(k)
that minimizes both the squared error (LMS term) and the dis-
tances between adjacent coefficients ofw(k). In other words,
the F-LMS algorithm for lowpass systems acts like the LMS
algorithm, but enforcing w(k) to be a lowpass system. It is
worth mentioning that ifwo is indeed a lowpass system, then
matrix Fl yields a sparse vector Flw(k).1
Thus, the F-LMS algorithm for lowpass systems is de-

fined by the recursion given in (2), but replacing vector p(k)
with pl(k) defined as
⎧⎪⎪⎨
⎪⎪⎩

pl,i(k) = sgn(w0(k)− w1(k)), if i = 0
pl,i(k) = −sgn(wi−1(k)− wi(k))

+sgn(wi(k)− wi+1(k)), if i = 1, · · · , N − 1
pl,i(k) = −sgn(wN−1(k)− wN (k)), if i = N

(5)

where sgn(·) denotes the sign function.
As previously explained, the F-LMS algorithm above tries

to reduce the distances between consecutive coefficients of
w(k), i.e., matrixFl can be understood as the process of win-
dowingw(k) with a window of length 2 (i.e., two coefficients
are considered at a time). We can increase the window length,
in order to make a smoothing considering more coefficients
simultaneously, by nesting linear combinations as follows:

FM−nested
l =

M∏
m=1

F
(m)
l Fl, (6)

where F(m)
l has the same structure given in (4), but losingm

rows andm columns in relation to the dimensions of Fl.
In addition to the previous examples, suppose that the un-

known system is the result of upsampling a lowpass system by
a factor of L. In this case, we should use matrix F∗

l , whose
rows have L − 1 zeros between the ±1 entries, in (3). For
L = 2, we have the following matrix

F∗

l =

⎡
⎢⎢⎢⎣

1 0 −1 0 · · · 0
0 1 0 −1 · · · 0
...

. . . . . . . . .
0 0 · · · 1 0 −1

⎤
⎥⎥⎥⎦ , (7)

and ‖F∗

lw(k)‖1 =
∑N−2

i=0 |wi(k)− wi+2(k)|.
1A matrix similar to the Fl in (4) is already known by the statisticians

working on a field called trend filtering [16].
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Next the F-LMS algorithm using such F∗

l has the update
rule given in (2), but replacing p(k) with p∗

l (k) defined as⎧⎪⎪⎨
⎪⎪⎩

p∗l,i(k) = sgn(wi(k)− wi+2(k)), if i = 0, 1

p∗l,i(k) = −sgn(wi−2(k)− wi(k))

+sgn(wi(k)− wi+2(k)), if i = 2, · · · , N − 2
p∗l,i(k) = −sgn(wi−2(k)− wi(k)), if i = N − 1, N

(8)

3.2. The F-LMS algorithm for highpass systems

If the unknown system wo has a highpass narrowband spec-
trum, then adjacent coefficients tend to have similar absolute
values, but with opposite signs. Therefore, the sum of two
consecutive coefficients is close to zero and we can exploit
this feature in the learning process by minimizing the sum of
adjacent coefficients of w(k). This can be accomplished by
selecting F as Fh, where Fh is a N × N + 1 feature matrix
defined as

Fh =

⎡
⎢⎢⎢⎣

1 1 0 · · · 0
0 1 1 · · · 0
...

. . . . . .
0 0 · · · 1 1

⎤
⎥⎥⎥⎦ , (9)

such that ‖Fhw(k)‖1 =
∑N−1

i=0 |wi(k) + wi+1(k)|.
The F-LMS algorithm for highpass systems is character-

ized by the recursion given in (2), but replacing p(k) with
ph(k), which is defined as⎧⎪⎪⎨
⎪⎪⎩

ph,i(k) = sgn(w0(k) + w1(k)), if i = 0
ph,i(k) = sgn(wi−1(k) + wi(k))

+sgn(wi(k) + wi+1(k)), if i = 1, · · · , N − 1
ph,i(k) = sgn(wN−1(k) + wN (k)), if i = N

(10)

Similar to the lowpass case, let us consider that the un-
known system is the result of interpolating a highpass system
by a factor L = 2. The set of interpolated highpass systems
leads to a notch filter with zeros at z = ±j. In this case,
we can utilize F∗

h in the objective function (3), where F∗

h is
described by

F∗

h =

⎡
⎢⎢⎢⎣

1 0 1 0 · · · 0
0 1 0 1 · · · 0
...

. . . . . . . . .
0 0 · · · 1 0 1

⎤
⎥⎥⎥⎦ , (11)

and ‖F∗

hw(k)‖1 =
∑N−2

i=0 |wi(k) + wi+2(k)|.
Using F∗

h, the F-LMS recursion in (2) should substitute
p(k) by p∗

h(k) defined as⎧⎪⎪⎨
⎪⎪⎩

p∗h,i(k) = sgn(wi(k) + wi+2(k)), if i = 0, 1

p∗h,i(k) = sgn(wi−2(k) + wi(k))

+sgn(wi(k) + wi+2(k)), if i = 2, · · · , N − 2
p∗h,i(k) = sgn(wi−2(k) + wi(k)), if i = N − 1, N

(12)
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Fig. 1. MSE learning curves of the LMS and F-LMS algo-
rithms considering wo,l: (a) both algorithms with the same
step size: μ = 0.03; (b) LMS and F-LMS with step sizes
equal to 0.01 and 0.03, respectively.

4. SIMULATIONS

In this section, we apply the LMS and the F-LMS algo-
rithms to identify some unknown lowpass and highpass
systems. The order of all the unknown systems is 39, i.e.,
they have 40 coefficients. The first example considers ex-
tremely lowpass and highpass systems defined as wo,l =
[0.4, · · · , 0.4]T and wo,h = [0.4,−0.4, 0.4, · · · ,−0.4]T ,
respectively. The second example uses the interpolated
models w′

o,l = [0.4, 0, 0.4, · · · , 0, 0.4, 0]T and w′

o,h =

[0.4, 0,−0.4, 0, 0.4, · · · , 0]T . The third example uses block-
sparse lowpass and block-sparse highpass models, w′′

o,l and
w′′

o,h, whose entries are defined in (13) and (14), respectively.

w′′

o,li
=

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

0, if 0 ≤ i ≤ 9
0.05(i− 9), if 10 ≤ i ≤ 14
0.3, if 15 ≤ i ≤ 24
0.3− 0.05(i− 24), if 25 ≤ i ≤ 29
0, if 30 ≤ i ≤ 39

, (13)

w′′

o,hi
= (−1)i+1w′′

o,li
. (14)

The input signal is a zero-mean white Gaussian noise
with unit variance. The signal-to-noise ratio (SNR) is chosen
as 20 dB. For all algorithms, the initial vector is w(0) =
[0, · · · , 0]T and α = 0.05. The values of the step size μ

are informed later for each simulated scenario. The MSE
learning curves of the LMS and F-LMS algorithms depicted
in Figures 1 to 4 are computed by averaging the outcomes of
200 independent trials.
Fig. 1 depicts the MSE learning curves of the LMS and

F-LMS algorithms considering the lowpass system wo,l. In
Fig. 1(a), both algorithms use the same step size μ = 0.03 so
that they exhibit similar convergence speeds. In this figure,
we can observe that the F-LMS algorithm achieved a steady-
state MSE which is more than 3 dB lower than the MSE re-
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Fig. 2. MSE learning curves of the LMS and F-LMS algo-
rithms considering wo,h: (a) both algorithms with the same
step size: μ = 0.03; (b) LMS and F-LMS with step sizes
equal to 0.01 and 0.03, respectively.
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Fig. 3. MSE learning curves of the LMS and F-LMS algo-
rithms, both with step size μ = 0.03, considering the un-
known systems: (a)w′

o,l and (b)w′

o,h.
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Fig. 4. MSE learning curves of the LMS and F-LMS algo-
rithms, both with step size μ = 0.03, considering the un-
known systems: (a)w′′

o,l and (b)w′′

o,h.

sults of the LMS algorithm. In Fig. 1(b), the steady-state MSE
of the algorithms are fixed in order to compare their conver-
gence speeds. Thus, we set the step sizes of the LMS and
F-LMS algorithms as 0.01 and 0.03, respectively. We can
observe, in this figure, that the F-LMS algorithm converged
much faster than the LMS algorithm.
In Fig. 2 we present results equivalent to the ones pre-

sented in Fig. 1, but considering the highpass system wo,h.
Once again, when the step sizes of both algorithms are the
same (μ = 0.03), refer to Fig. 2(a), the F-LMS algorithm
achieved lower steady-state MSE; whereas the F-LMS algo-
rithm (with μ = 0.03) converged much faster than the LMS
algorithm (with μ = 0.01) when their steady-state MSEs are
fixed, as illustrated in Fig. 2(b).
Figs. 3(a) and 3(b) depict the MSE learning curves of the

LMS and F-LMS algorithms, both using μ = 0.03, consider-
ing the interpolated systemsw′

o,l andw′

o,h, respectively. No-
tice, in both figures, that the F-LMS algorithm achieved lower
steady-state MSE, thus outperforming the LMS algorithm.
Figs. 4(a) and 4(b) depict the MSE learning curves of the

LMS and F-LMS algorithms, both using μ = 0.03, consider-
ing the block-sparse systems w′′

o,l and w′′

o,h, respectively. In
both cases, the F-LMS algorithm achieved lower steady-state
MSE, thus outperforming the LMS algorithm.

5. CONCLUSIONS

In this paper, we proposed a family of algorithms called
Feature LMS (F-LMS). The F-LMS algorithms are capable
of exploiting specific features of the unknown system to be
identified in order to accelerate convergence speed and/or
reduce steady-state MSE, obtaining a more accurate estimate.
The main idea is to apply a sparsity-promoting function to
a linear combination of the parameters, in which this linear
combination should reveal the sparsity hidden in the pa-
rameters, i.e., the linear combination exploits the specific
structure/feature in order to generate a sparse vector. Some
examples of F-LMS algorithms having low computational
complexity and exploiting the lowpass and highpass charac-
teristics of unknown systems were introduced. Simulation
results confirmed the superior performance of the F-LMS
algorithm in comparison with the LMS algorithm.
In future works, we intend to investigate other choices for

the sparsity-promoting penalty function and the feature ma-
trix, analyze the stability and MSE of the F-LMS algorithm,
and demonstrate how the F-LMS approach can be used to re-
duce the computational complexity during the update process
of the adaptive filter.
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