
IMPROVED STEADY STATE ANALYSIS OF THE RECURSIVE LEAST SQUARES
ALGORITHM

Muhammad Moinuddin1,2 Tareq Y. Al-Naffouri3 Khaled A. Al-Hujaili4

1Electrical and Computer Engineering Department, King Abdulaziz University (KAU),
Kingdom of Saudi Arabia (KSA), Email: mmsansari@kau.edu.sa

2Center of Excellence in Intelligent Engineering Systems (CEIES), KAU, KSA, Email: mmsansari@kau.edu.sa
3 Electrical Engineering Department, King Abdullah University of Science and Technology,

Kingdom of Saudi Arabia, Email:tareq.alnaffouri@kaust.edu.sa
4 Department of Electrical Engineering, Taibah University, KSA, Email:khujaili@taibah.edu.sa

ABSTRACT

This paper presents a new approach for studying the steady
state performance of the Recursive Least Square (RLS) adap-
tive filter for a circularly correlated Gaussian input. Earlier
methods have two major drawbacks: (1) The energy rela-
tion developed for the RLS is approximate (as we show later)
and (2) The evaluation of the moment of the random variable
‖ui‖2Pi

, where ui is input to the RLS filter and Pi is the es-
timate of the inverse of input covariance matrix by assuming
that ui and Pi are independent (which is not true). These as-
sumptions could result in negative value of the stead-state Ex-
cess Mean Square Error (EMSE). To overcome these issues,
we modify the energy relation without imposing any approx-
imation. Based on modified energy relation, we derive the
steady-state EMSE and two upper bounds on the EMSE. For
that, we derive closed from expression for the aforementioned
moment which is based on finding the cumulative distribution
function (CDF) of the random variable of the form 1

γ+||u||2D
,

where u is correlated circular Gaussian input and D is a di-
agonal matrix. Simulation results corroborate our analytical
findings.

Index Terms— Adaptive Filters, RLS, Steady-state anal-
ysis, Mean square analysis, Excess Mean-Squares-Error

1. INTRODUCTION

The RLS is one of the important algorithm from the adaptive
filter’s family. Motivation for the RLS adaptive filters relies
on the fact that it provide a solution to the least square error
minimization problem. The RLS algorithms are more costlier
than the basic families such as the Leat mean squares family
(LMS) but with much faster convergence speed. Analyzing
the performance of the RLS algorithm is not an easy task due
to the presence of the input covariance matrix and its inverse
which depend on current and past input regressors. As such,
only a few works considered the performance of the RLS and

its variants [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12]. The simplest
approach is based on the energy relation [9, 13] which (with
the aid of separation principle [9]) can be used to state that
the EMSE is a function of the moment E[||ui||2Pi ], where ui
is the input regressor and Pi is the estimate of the inverse
of input covariance matrix. Another separation principle is
then used to write E[||ui||2Pi ] = Tr(E[u∗iui]Pi). But this
approach is not rigorous as ui and Pi are dependent. Other
approaches use the idea of random matrix to study the perfor-
mance of the RLS [10, 11]. In addition to requiring a much
more sophisticated machinery, these approaches are valid for
filters relatively larger sizes.

In this work, we perform steady-state analysis of the RLS
algorithm for correlated circular Gaussian inputs. The ap-
proach is based on evaluating the CDF and the moments of
random variable of the form z = 1

γ+||u||2D
where u is a corre-

lated circular Gaussian vector and D is a diagonal matrix1. To
evaluate the CDF, we replace the step function with its equiv-
alent Fourier transform and employ complex integration. Us-
ing this CDF, we evaluate in closed form the required moment
that appear in the steady-state mean-square analysis of RLS
algorithm.

2. THE EXPONENTIALLY WEIGHTED RLS
ALGORITHM

The exponentially weighted RLS attempts to solve the follow-
ing problem

min
w

[
γ(N+1)w∗Πw + (yN −HNw)∗ΓN (yN −HNw)

]
(1)

in a recursive manner. Here yN = [d(0), d(1), · · · , d(N)]T

is the measurements vector and HN is the (N + 1 × M )

1For any matrix D, the quadratic form ||u||2D is defined as ||u||2D
4
=

u∗Du where the notation ()∗ denotes conjugate transposition.
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data matrix consisting of (N + 1) row regressor vectors uk
and ΓN = diag{γN , γN−1 , . . . , γ , 1} is a diagonal
weighting matrix defined in terms of the forgetting factor γ
( 0 � γ ≤ 1 ). It can be shown that the solution of (1)
is wN = PNH∗NΓNyN . The RLS allows us to obtain the
solution of (1) in a recursive manner. Specifically, we have

wi = wi−1 + Piu
∗
i [d(i)− uiwi−1] (2)

where

Pi = γ−1
[
Pi−1 −

Pi−1u
∗
iuiPi−1

γ + uiPi−1u∗i

]
(3)

which is initialized with w−1 = 0 and P−1 = Π.

3. THE CONVENTIONAL ENERGY RELATION FOR
THE RLS

In the system identification model, the measurement d(i)
takes the form d(i) = u∗iw

o + v(i) where v(i) is an additive
noise and wo is the system coefficients. We can thus define
the weight error vector as w̃i = wo −wi and write (2) as

w̃i = w̃i−1 −Piu
∗
i e(i) (4)

where e(i) = d(i) − uiwi−1 which is called the estima-
tion error. Two other error measures are the a priori and a
posteriori estimation errors defined by respectively ea(i) =
uiw̃i−1, ep(i) = uiw̃i. If we multiply both sides of (4)
from the left by ui we obtain

ep(i) = ea(i)− ‖ui‖2Pie(i) (5)

Next, by evaluating the energies of both sides of (4) with the
aid of (5) will lead to the well known Energy Conservation
Relation [9] given by

E

[
|ea(i)|2

‖ui‖2Pi

]
= E

[
|ep(i)|2

‖ui‖2Pi

]
(6)

Finally, by using (5) and the fact that e(i) = ea(i) + v(i), we
can show that

σ2
vE‖ui‖2Pi + E

(
‖ui‖2Pi · |ea(i)|2

)
= 2E|ea(i)|2 (7)

This relation can be used to evaluate the steady-state EMSE
which is defined as ζ =4 lim

i→∞
E|ea(i)|2.

3.1. Approach of [9] and its Drawbacks

The approach of [9] hss following drawbacks:

1. In the development of the energy relation (7), it as-
sumes lim

i→∞
E[‖w̃i‖2P−1

i

] = lim
i→∞

E[‖w̃i−1‖2P−1
i

] which

is not true because the norms ‖w̃i‖2 and ‖w̃i−1‖2 are
not weighted by their respective P matrices.

2. It assumes that ui and Pi are independent which is not
true as can be seen from (3) ( which shows that Pi is
a function of ui and Pi−1). As a result, the moment
E‖ui‖2Pi is approximated as

lim
i→∞

E‖ui‖2Pi = E‖ui‖2lim
i→∞

E[Pi]
= Tr(RP) (8)

where Tr represents the trace operator, P = lim
i→∞

E[Pi]

and R = E[u∗iui]

3. It assumes that the expectation of the inverse of Pi is
equal to the inverse of expectation of Pi, i.e.,

P ≈
(

lim
i→∞

E[P−1i ]
)−1

= (1− γ)R−1 (9)

which is also not true in general.

By employing (8) and (9), the required moment is approxi-
mated as E‖ui‖2Pi ≈ Trace(RP) ≈ (1 − γ)M . Thus, the
EMSE proposed by [9] is found to be

ζ ≈ σ2
v(1− γ)M

2− (1− γ)M
(10)

The problem with the above result is that it will give negative
values of EMSE for the scenario of (1−γ)M > 2 and a value
of infinity at (1−γ)M = 2 which are not realizable. In order
to deal with the above limitations, we propose to modify the
energy relation which is presented next.

4. OUR APPROACH: MODIFIED ENERGY
RELATION FOR THE RLS

In the proposed approach, we modify the energy relation by
rewriting ‖w̃i−1‖2P−1

i

in terms of P−1i−1. This is done by ex-

pressing the P−1i in terms of P−1i−1 using the relation P−1i =

γP−1i−1 + u∗iui which modifies the term ‖w̃i−1‖2P−1
i

to

‖w̃i−1‖2P−1
i

= γ‖w̃i−1‖2P−1
i−1

+ |ea(i)|2 (11)

By using the above, the modified energy relation takes the
form

‖w̃i‖2P−1
i

+
|ea(i)|2

‖ui‖2Pi
= γ‖w̃i−1‖2P−1

i−1

+ |ea(i)|2 +
|ep(i)|2

‖ui‖2Pi
(12)

Now, by replacing |ep(i)|2 by its equivalent expression in
(5) and by assuming that lim

i→∞
‖w̃i‖2P−1

i

= lim
i→∞

‖w̃i−1‖2P−1
i−1

yields

|v|2‖ui‖2Pi + ‖ui‖2Pi |ea(i)|2 = |ea(i)|2 + (1− γ)‖w̃i‖2P−1
i

(13)
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Next, we evaluate the term ‖w̃i‖2P−1
i

using the relation

P−1i = γP−1i−1 + u∗iui which results in

‖w̃i‖2P−1
i

= γ‖w̃i‖2P−1
i−1

+ ‖w̃i‖2u∗i ui (14)

But ‖w̃i‖2u∗i ui is nothing but |ep(i)|2. As a result, the energy
relation in (13) can be rewritten as

|v|2‖ui‖2Pi + ‖ui‖2Pi |ea(i)|2 = |ea(i)|2 + (1− γ)γ‖w̃i‖2P−1
i−1

+(1− γ)|ep(i)|2 (15)

In the ensuing section, we derive the steady-state EMSE and
its upper bounds using the modified energy relation (15).

5. PROPOSED STEADY-STATE EMSE

In this section, with the aid of separation principle, we eval-
uate the expression for the steady-state EMSE of the RLS by
using the modified energy relation derived in (15). We start
by taking expectation on both sides of (15) to arrive at

σ2
vE[‖ui‖2Pi ] + E[‖ui‖2Pi |ea(i)|2] = E[|ea(i)|2]

+(1− γ)γE[‖w̃i‖2P−1
i−1

] + (1− γ)E[|ep(i)|2] (16)

Since P−1i−1 is a function of {uj} for all j < i and the inde-
pendence assumption dictates us that w̃i is independent of uj
for all j < i, we conclude that w̃i is independent of P−1i−1.
Hence, the term E[‖w̃i‖2P−1

i−1

] can be simplified to

E[‖w̃i‖2P−1
i−1

] = E[‖w̃i‖2E[P−1
i−1]

] =
E[‖w̃i‖2R]

(1− γ)
=
E[|ea(i)|2]

(1− γ)
(17)

where we have used the facts that E[P−1i−1] = R
(1−γ) and

E[‖w̃i‖2R] = E[|ea(i)|2]. Thus, the relation in (16) can be
set up as

σ2
vE[‖ui‖2Pi ] + E[‖ui‖2Pi |ea(i)|2] = (1 + γ)E[|ea(i)|2]

+(1− γ)E[|ep(i)|2] (18)

To proceed further, we replace ‖ui‖2Pi in (18) by its equiva-
lent representation2

‖ui‖2Pi =
‖ui‖2Pi−1

γ + ‖ui‖2Pi−1

= 1− γ

γ + ‖ui‖2Pi−1

(19)

At this stage, we define the following random variable

Z
4
=

1

γ + ‖ui‖2Pi−1

(20)

2This equivalent representation is obtained by pre and post multiplying
(3) by ui and u∗i , respectively.

Thus, with the aid of the above definition and the relation
given in (5), the relation (18) results in the following expres-
sion for the steady-state EMSE

ζ =
σ2
v

(
1 + E[Z]− 2γE[Z]− γ(1− γ)E[Z2]

)
1 + E[Z] + γ(1− γ)E[Z2]

(21)

where we have employed the separation principle for the

terms E
[
|ea(i)|2

γ+‖ui‖2Pi−1

]
and E

[
|ea(i)|2

(γ+‖ui‖2Pi−1
)2

]
. It can be seen

from (21) that the calculation of EMSE requires the evalu-
ation of E[Z] and E[Z2] which are provided in Appendix.

6. UPPER BOUNDS ON THE EMSE

In this section, we aim to derive upper bounds on the EMSE
of the RLS without invoking the separation principlefor two
extreme scenarios: large values of γ (as γ → 1) and small
vaues of γ (as γ → 0).

6.1. Upper Bound for Large Values of γ

Starting with (15) and by taking expectation with the aid of
the result in (17 and the alternate expression for ‖ui‖2Pi , we
can show that

σ2
vE[‖ui‖2Pi−1

] = (γ + γ2)ζ + γ(1− γ)E[‖w̃i‖2P−1
i−1

‖ui‖2Pi−1
]

+(1− γ)E[|ep(i)|2(γ + ‖ui‖2Pi−1
)] (22)

To obtain the upper bound on the EMSE, we drop the last two
terms on the right hand side of the above having the term (1−
γ) which is also a good approximation of the EMSE for larger
values of γ as (1 − γ) approaches to zero as γ approaches to
unity. As a result, we arrive to the following upper bound on
the EMSE

ζ ≤
σ2
vE
[
‖ui‖2Pi−1

]
γ + γ2

=
σ2
vTr(RP)

γ + γ2
(23)

where we have used the fact that lim
i→∞

E
[
‖ui‖2Pi−1

]
=

Tr(RP) because Pi−1 is independent of ui.

6.2. Upper Bound for Small Values of γ

We again start with (15) to develop the upper bound for
smaller values of γ. By dropping the term (1− γ)γ‖w̃i‖2P−1

i−1

and approximating the term (1 − γ) as unity (which is true
for small values of γ), we can have the following inequality

|v|2‖ui‖2Pi + ‖ui‖2Pi |ea(i)|2 ≥ |ea(i)|2 + |ep(i)|2 (24)

Now, using (5) and alternative representation of ‖ui‖2Pi given
in (19), the above relation results in

|v|2‖ui‖2Pi−1
≥ 2γ|ea(i)|2 + |ea(i)|2‖ui‖2Pi−1

(25)
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Fig. 1. EMSE of the RLS versus forgetting factor γ.
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Next, by taking expectation on both sides of the above gives
us

σ2
vE[‖ui‖2Pi−1

] ≥ 2γE[|ea(i)|2] + E[|ea(i)|2‖ui‖2Pi−1
]

(26)
Finally, by dropping the second term from the right hand side
of (26) and using the fact that Pi−1 is independent of ui, we
get the following upper bound on the EMSE

ζ ≤ σ2
vTr(RP)

2γ
(27)

7. SIMULATION RESULTS

In simulations, the steady-state performance of the RLS al-
gorithm is investigated for an unknown system identification
withwo = [0.13484 , 0.26968 , 0.40452 , 0.53936 , 0.67420]T .
The noise is zero mean i.i.d with variance σ2

v = 0.001.
Input to the adaptive filter and to the unknown system is
correlated circular complex Gaussian having correlation
R(i, j) = α

|i−j|
c (0 < αc < 1). We first compare our

derived EMSE (given in (21)) with the one obtained via sim-
ulations and the one proposed in [9] in Fig. 2. It can be
depicted from the figure that the proposed EMSE result has
a good match with the simulation for larger values of γ (say
γ > 0.8) but it gives a poor estimate for smaller values of
γ. This deviation is because of employing the separation

0.4 0.5 0.6 0.7 0.8 0.9 1
−50

−45

−40

−35

−30

−25

−20

γ

E
M

S
E

 (
dB

)

 

 
Proposed Upper Bound For Small γ
EMSE via Simulations
EMSE via Proposed Approach

0.4 0.45 0.5 0.55 0.6
−35

−30

−25

Fig. 3. Upper Bound for small γ.

principle which is not valid for smaller values of γ. On the
other hand, the EMSE using [9] gives positive values only for
larger forgetting factor i.e., γ ≥ 9. This is because of the fact
that the EMSE expression given in [9] becomes unrealistic
(negative or infinity) for (1 − γ)M ≥ 2. In contrast, our ap-
proach is valid for all values of γ and M . Next, in Fig. 2, the
upper bound for large γ (given in (23)) is compared with the
EMSE via simulation and using (21). It can be depicted from
the result and its zoomed view that the proposed upper bound
is tight and very close to the simulation result particularly for
large values of γ. Finally, in Fig. 3, the upper bound for small
γ (given in (27)) is plotted which also shows that this upper
bound is also close to the EMSE via simulations near small
values of γ.

8. CONCLUSION

In this work, we analyze the RLS algorithm at steady state
for correlated complex Gaussian input and we evaluate its
steady-state EMSE. The novelty of the work resides in three
aspects: first in the modification of energy relation, second in
the evaluation of the moment E[||ui||2Pi ] which is based on
the derivation of a closed form expression for the CDF and
moment of random variable of the form 1

γ+||u||2D
, and third

in derivation of upper bounds on the EMSE for both large
and small values of γ. Simulation results show that, unlike
the previous work, EMSE via our approach is valid for a vide
range of γ. Also, the derived upper bounds are very close to
the simulations in their respective ranges.
APPENDIX: Moments of the Random Variable Z
We evaluate the required moments of Z by first evaluating its
CDF using the approach of [14, 15] and are found to be

E[Z] =
1

γ
−

M∑
m=1

[
E2( γ

fm
)e

γ
fm

γ
∏M
i=1
6=m

[1− fi
fm

]

]
(28)

and

E[Z2] =
1

γ2
−

M∑
m=1

[
e
γ
fm

(
E2( γ

fm
) + E3( γ

fm
)
)

γ2
∏M
i=1
6=m

[1− fi
fm

]

]
(29)
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