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ABSTRACT
In this paper, we develop the Kalman filter for the identification

of bilinear forms. In this framework, the bilinear term is defined with
respect to the impulse responses of a spatiotemporal model, which
resembles a multiple-input/single-output system. Recently, the iden-
tification of such bilinear forms was addressed in terms of the Wiener
filter and conventional adaptive algorithms, i.e., least-mean-square
and recursive least-squares. In this work, apart from the derivation
of the Kalman filter tailored for the identification of bilinear forms,
a simplified (i.e., low complexity) version of the algorithm is also
presented. Simulation results support the theoretical findings and
indicate the good performance of the proposed solutions.

Index Terms— Adaptive filters, bilinear forms, Kalman filter,
multiple-input/single-output (MISO) system, system identification.

1. INTRODUCTION

The bilinear systems have been previously studied in various con-
texts [1], among which the approximation of nonlinear systems.
There are many applications deriving from here, e.g., system iden-
tification [2]– [5], digital filter design [6], echo cancellation [7],
chaotic communications [8], active noise control [9], neural net-
works [10], etc. In these works, the bilinear term is defined in terms
of an input-output relation (i.e., with respect to the data).

Recently, a different approach was presented in [11] by defin-
ing the bilinear term in the context of a multiple-input/single-output
(MISO) system, with respect to the impulse responses of a spa-
tiotemporal model. The identification of such bilinear forms with
the Wiener filter has been addressed in [11], followed by adaptive
solutions based on the least-mean-square (LMS), normalized LMS
(NLMS), and recursive least-squares (RLS) algorithms [12]. Similar
frameworks can be found in [13]– [17], in the context of different
applications (most of them were not associated with bilinear forms).

In this paper, we focus on deriving a different type of algorithm,
based on the Kalman filter [18], which will be tailored for the iden-
tification of such bilinear forms. Also, a simplified (i.e., low com-
plexity) version of this algorithm is developed, which could be more
suitable in practice.

The rest of this paper is organized as follows. Section 2 intro-
duces the system model in the context of bilinear forms. In this
framework, the Kalman filter is developed in Section 3, while the
simplified version of the algorithm is derived in Section 4. Some
practical considerations are provided in Section 5. Simulations per-
formed in the context of system identification are presented in Sec-
tion 6. Finally, Section 7 concludes this work.

This work was supported under the Grants SeaForest 86/2016 and Sen-
SyStar 190/2017. P. Piantanida would like to acknowledge support for this
work from the LIA of the CNRS on Information, Learning and Control.

2. SYSTEM MODEL

The signal model considered throughout the paper is given by [11]

d(t) = hT (t)X(t)g(t) + v(t) = y(t) + v(t), (1)

where d(t) is the zero-mean desired (or reference) signal at the
discrete-time index t, h(t) and g(t) are the two impulse responses
of the system of lengths L and M , respectively, the superscript T

is the transpose operator, X(t) = [x1(t) x2(t) . . . xM (t)]
is the zero-mean multiple-input signal matrix, where xm(t) =
[xm(t) xm(t− 1) . . . xm(t−L+1)]T is a vector containing
the L most recent samples of the mth (m = 1, 2, . . . ,M ) input
signal, y(t) = hT (t)X(t)g(t) is the bilinear form, and v(t) is a
zero-mean additive noise (with the variance σ2

v). It is assumed that
all the signals are real valued, and X(t) and v(t) are independent.
The output signal y(t) represents a bilinear function of h(t) and
g(t), because for every fixed h(t), y(t) is a linear function of g(t),
and for every fixed g(t), it is a linear function of h(t).

We can rewrite the matrix X(t), of size L ×M , as a vector of
length ML, by using the vectorization operation, i.e., vec[X(t)] =
[xT

1 (t) xT
2 (t) . . . xT

M (t)]T = x̃(t). Thus, we can express the
output signal as y(t) = hT (t)X(t)g(t) = [g(t)⊗ h(t)]T x̃(t) =
fT (t)x̃(t), where ⊗ denotes the Kronecker product between the in-
dividual impulse responses and the vector f(t) = g(t) ⊗ h(t), of
length ML, represents the spatiotemporal (i.e., global) impulse re-
sponse of the system. In this way, the signal model in (1) becomes

d(t) = fT (t)x̃(t) + v(t). (2)

The difference with respect to the general case of a MISO system
lies in the fact that in this bilinear context f(t) is formed with only
M + L different elements, despite that it is of length ML.

The purpose is to identify the two impulse responses h(t) and
g(t), and, consequently, the spatiotemporal impulse response f(t).
To this purpose, we can use two adaptive filters, ĥ(t) and ĝ(t), while
the global impulse response can be evaluated as f̂(t) = ĝ(t) ⊗
ĥ(t). Let η 6= 0 be a real-valued number. It is clear from (1) that
[h(t)/η]T X(t) [ηg(t)] = hT (t)X(t)g(t) = y(t), so that the pair
h(t)/η and ηg(t) is equivalent to the pair h(t) and g(t) in the bilin-
ear form. This implies that we can only identify ĥ(t) and ĝ(t) up to
a scaling factor. A similar discussion can be found in [13] and [17] in
the context of blind identification/equalization and nonlinear acous-
tic echo cancellation, respectively. However, since f(t) = g(t) ⊗
h(t) = [ηg(t)] ⊗ [h(t)/η], the spatiotemporal impulse response
will be identified with no scaling ambiguity. Therefore, to evaluate
the identification of the temporal and spatial filters, we should use
the normalized projection misalignment, as defined in [19], and for
the identification of the global filter f(t) we shall use the normalized

4134978-1-5386-4658-8/18/$31.00 ©2018 IEEE ICASSP 2018



misalignment, which is defined as ‖f(t) − f̂(t)‖2/‖f(t)‖2, where
‖ · ‖ denotes the Euclidean norm.

In [11], this system identification problem has been addressed
in terms of the Wiener filter. Hence, it was considered that the im-
pulse responses that have to be identified are time-invariant systems
(which is a basic assumption in the context of the Wiener filter).
However, in practice, these systems could be variable in time. Con-
sequently, in this paper, we approach the system identification prob-
lem in terms of the Kalman filter. In this context, the signal model
from (1) can be considered as the observation equation, while the
system impulse responses can be modeled as state equations. There-
fore, we consider that h(t) and g(t) are zero-mean random vectors,
which follow a simplified first-order Markov model, i.e.,

h(t) = h(t− 1) +wh(t), (3)
g(t) = g(t− 1) +wg(t), (4)

where wh(t) and wg(t) are zero-mean white Gaussian noise vec-
tors, with correlation matrices Rwh(t) = σ2

wh
IL and Rwg (t) =

σ2
wg

IM , respectively (where IL and IM are the identity matrices of
size L × L and M ×M , respectively). It is considered that wh(t)
is uncorrelated with h(t− 1) and v(t), while wg(t) is uncorrelated
with g(t − 1) and v(t). The variances σ2

wh
and σ2

wg
capture the

uncertainties in h(t) and g(t), respectively.

3. KALMAN FILTER FOR BILINEAR FORMS

In the section, we address the previously described system identi-
fication problem based on the Kalman filter. Given the two adap-
tive filters ĥ(t) and ĝ(t), the estimated signal is given by ŷ(t) =

ĥT (t − 1)X(t)ĝ(t − 1). As a result, the a priori error signal be-
tween the desired and estimated signals can be defined as

e(t) = d(t)− ŷ(t) = d(t)− ĥT (t− 1)X(t)ĝ(t− 1)

= d(t)−
[
ĝ(t− 1)⊗ ĥ(t− 1)

]T
x̃(t) = d(t)− f̂T (t− 1)x̃(t)

= d(t)− ĥT (t− 1)x̃ĝ(t) = d(t)− ĝT (t− 1)x̃ĥ(t), (5)

where x̃ĝ(t) = [ĝ(t − 1) ⊗ IL]
T x̃(t) and x̃ĥ(t) = [IM ⊗ ĥ(t −

1)]T x̃(t).
In the context of the linear sequential Bayesian approach, the

optimal estimates of the state vectors have the forms [20]:

ĥ(t) = ĥ(t− 1) + kh(t)e(t), (6)
ĝ(t) = ĝ(t− 1) + kg(t)e(t), (7)

where kh(t) and kg(t) are the Kalman gain vectors. Next, let us
define the a posteriori misalignments (which represent the state esti-
mation errors) related to the temporal and spatial impulse responses
as µh(t) = h(t)/η−ĥ(t) and µg(t) = ηg(t)−ĝ(t), for which their
correlation matrices are Rµh

(t) = E[µh(t)µ
T
h (t)] and Rµg

(t) =

E[µg(t)µ
T
g (t)], respectively. As mentioned in Section 2, we can

only identify the impulse responses up to this arbitrary scaling factor
η; however, the pair h(t)/η and ηg(t) is equivalent to the pair h and
g in the bilinear form. Also, we can define the a priori misalignments
related to the two impulse responses:

mh(t) =
1

η
h(t)− ĥ(t− 1) = µh(t− 1) +

1

η
wh(t), (8)

mg(t) = ηg(t)− ĝ(t− 1) = µg(t− 1) + ηwg(t), (9)

Table 1: Kalman filter for bilinear forms (KF-BF).

Initialization:
ĥ(0) = [1 0 . . . 0]T , ĝ(0) = (1/M)[1 1 . . . 1]T

Rµh
(0) = εIL, Rµg

(0) = εIM , ε = small positive constant

Parameters: σ2
wh
, σ2

wg
, σ2

v known or estimated

Algorithm:
Rmh (t) = Rµh

(t− 1) + σ2
wh

IL

Rmg (t) = Rµg
(t− 1) + σ2

wg
IM

kh(t) = Rmh (t)x̃ĝ(t)
[
x̃T
ĝ (t)Rmh (t)x̃ĝ(t) + σ2

v

]−1

kg(t) = Rmg (t)x̃ĥ
(t)
[
x̃T
ĥ
(t)Rmg (t)x̃ĥ

(t) + σ2
v

]−1

e(t) = d(t)− x̃T
ĝ (t)ĥ(t− 1) = d(t)− x̃T

ĥ
(t)ĝ(t− 1)

ĥ(t) = ĥ(t− 1) + kh(t)e(t)

ĝ(t) = ĝ(t− 1) + kg(t)e(t)

Rµh
(t) =

[
IL − kh(t)x̃

T
ĝ (t)

]
Rmh (t)

Rµg
(t) =

[
IM − kg(t)x̃

T
ĥ
(t)
]
Rmg (t)

whose correlation matrices are Rmh(t) = E
[
mh(t)m

T
h (t)

]
and

Rmg (t) = E
[
mg(t)m

T
g (t)

]
, respectively.

For the sake of simplicity of the coming development, let us mul-
tiply (3) and (4) by 1/η and η, respectively, and introduce the nota-
tion wh(t) = wh(t)/η and wg(t) = ηwg(t); these also represent
zero-mean white Gaussian noise vectors, with correlation matrices
Rwh(t) = σ2

wh
IL and Rwg (t) = σ2

wg
IM , respectively. Clearly,

we have σ2
wh

= σ2
wh
/η2 and σ2

wg
= η2σ2

wg
. Consequently, using

this notation and developing in (8) and (9), we get

Rmh(t) = Rµh
(t− 1) + σ2

wh
IL, (10)

Rmg (t) = Rµg
(t− 1) + σ2

wg
IM . (11)

The Kalman gain vectors are obtained by minimizing the crite-
rions Jh(t) = (1/L)tr [Rµh

(t)] and Jg(t) = (1/M)tr
[
Rµg

(t)
]

with respect to kh(t) and kg(t), respectively, where tr [·] denotes
the trace of a square matrix. From these minimizations, we find that

kh(t) =
Rmh(t)x̃ĝ(t)

x̃T
ĝ (t)Rmh(t)x̃ĝ(t) + σ2

v

, (12)

kg(t) =
Rmg (t)x̃ĥ(t)

x̃T
ĥ
(t)Rmg (t)x̃ĥ(t) + σ2

v

, (13)

and

Rµh
(t) =

[
IL − kh(t)x̃

T
ĝ (t)

]
Rmh(t), (14)

Rµg
(t) =

[
IM − kg(t)x̃

T
ĥ
(t)
]
Rmg (t). (15)

Summarizing, the equations that define the Kalman filter for bilinear
forms (namely KF-BF) are given in Table 1.
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4. SIMPLIFIED KALMAN FILTER FOR BILINEAR
FORMS

In order to reduce the computational complexity of the KF-BF, a
simplified version of this algorithm is derived in this section. The
idea of this simplified algorithm is inspired by the work developed
in [21] and [22], in the context of echo cancellation. To begin, let us
assume that the KF-BF has converged to its steady-state. In this case,
Rmh(t) and Rmg (t) tend to become diagonal matrices with all
the elements on the main diagonal equal to small positive numbers,
σ2
mh

(t) and σ2
mg

(t), respectively. Consequently, we can use the ap-
proximations Rmh(t) ≈ σ

2
mh

(t)IL and Rmg (t) ≈ σ2
mg

(t)IM .
In this way, the Kalman gain vectors for both temporal and spa-

tial impulse responses simplify to

kh(t) =
x̃ĝ(t)

x̃T
ĝ (t)x̃ĝ(t) + δh(t)

, (16)

kg(t) =
x̃ĥ(t)

x̃T
ĥ
(t)x̃ĥ(t) + δg(t)

, (17)

where δh(t) = σ2
v/σ

2
mh

(t) and δg(t) = σ2
v/σ

2
mg

(t) can be seen as
variable regularization parameters. Then, the Kalman vectors from
(16) and (17) are used in the updates (6) and (7), respectively.

Next, another simplification can be performed, by assuming that
the matrices that appear in the update of Rµh

(t) and Rµg
(t) can be

approximated as

IL − kh(t)x̃
T
ĝ (t) ≈

[
1− 1

L
kT
h (t)x̃ĝ(t)

]
IL, (18)

IM − kg(t)x̃
T
ĥ
(t) ≈

[
1− 1

M
kT
g (t)x̃ĥ(t)

]
IM . (19)

These approximations are based on the fact that, as the filters start to
converge, the misalignments of the individual coefficients tend to be-
come uncorrelated; consequently, the matrices Rµh

(t) and Rµg
(t)

tend to become diagonal. Therefore, using the notation Rmh(t) ≈
σ2
mh

(t)IL = rmh(t)IL and Rmg (t) ≈ σ2
mg

(t)IM = rmg (t)IM ,
together with Rµh

(t) ≈ σ2
µh

(t)IL = rµh
(t)IL and Rµg

(t) ≈
σ2
µg

(t)IM = rµg
(t)IM , the simplified Kalman filter for bilinear

forms (namely SKF-BF) is summarized in Table 2. In terms of com-
plexity, this simplified version is much more advantageous as com-
pared to the KF-BF, which involves matrix operations.

5. PRACTICAL CONSIDERATIONS

The previously developed KF-BF and SKF-BF are designed to iden-
tify the individual impulse responses of the bilinear form, while
the global impulse response can be obtained based on the Kro-
necker product between them. Alternatively, we may use the regular
Kalman filter to directly identify the spatiotemporal impulse re-
sponse, based on the observation equation (2) and considering the
state equation f(t) = f(t − 1) +w(t), where w(t) is a zero-mean
white Gaussian noise signal vector. The correlation matrix of w(t)
is Rw(t) = σ2

wIML, where IML is the ML×ML identity matrix
and the variance σ2

w captures the uncertainties in f(t).
In this context, following the approach presented in [21], it is

straightforward to derive the regular Kalman filter (KF) and the sim-
plified KF (SKF), which are able to identify the global impulse re-
sponse using a single adaptive filter f̂(t); for further details, please
see Sections VI and VII in [21]. Nevertheless, we should note that
the solution based on the regular KF and SKF involves an adaptive

Table 2: Simplified Kalman filter for bilinear forms (SKF-BF).

Initialization:
ĥ(0) = [1 0 . . . 0]T , ĝ(0) = (1/M)[1 1 . . . 1]T

rµh
(0) = rµg

(0) = ε (small positive constant)

Parameters: σ2
wh
, σ2

wg
, σ2

v known or estimated

Algorithm:
rmh (t) = rµh

(t− 1) + σ2
wh

(t)

rmg (t) = rµg
(t− 1) + σ2

wg
(t)

δh(t) = σ2
v/rmh (t)

δg(t) = σ2
v/rmg (t)

e(t) = d(t)− x̃T
ĝ (t)ĥ(t− 1) = d(t)− x̃T

ĥ
(t)ĝ(t− 1)

ĥ(t) = ĥ(t− 1) + x̃ĝ(t)e(t)
[
x̃T
ĝ (t)x̃ĝ(t) + δh(t)

]−1

ĝ(t) = ĝ(t− 1) + x̃
ĥ
(t)e(t)

[
x̃T
ĥ
(t)x̃

ĥ
(t) + δg(t)

]−1

rµh
(t) =

{
1−

1

L
x̃T
ĝ (t)x̃ĝ(t)

[
x̃T
ĝ (t)x̃ĝ(t) + δh(t)

]−1
}
rmh (t)

rµg
(t) =

{
1−

1

M
x̃T
ĥ
(t)x̃

ĥ
(t)
[
x̃T
ĥ
(t)x̃

ĥ
(t) + δg(t)

]−1
}
rmg (t)

filter of length ML, while the new KF-BF and SKF-BF use two
shorter filters of lengths L and M , respectively. Consequently, a
faster converge rate/tracking is expected for the proposed algorithms
as compared to the conventional approaches.

Next, several considerations should be made related to the spe-
cific parameters that need to be set within the algorithms. First, the
noise power σ2

v is required within the Kalman gain vectors. In prac-
tice, this parameter can be estimated in different ways; for example,
some simple and efficient methods for this purpose can be found
in [23] or [24]. We should note that different other estimators can
be used for the noise power; the analysis of their influence on the
algorithms’ performance is beyond the scope of this paper.

Second, the parameters related to the uncertainties in the un-
known systems should be set or estimated, i.e., σ2

wh
and σ2

wg
. Small

values of these parameters imply a good misalignment but a poor
tracking, while large values (i.e., the uncertainties in the unknown
systems are high) imply a good tracking but a high misalignment. In
other words, there is always a compromise between good tracking
and low misalignment. In practice, if some a priori information is
available (about the systems we need to identify), it could be taken
into account in order to set these parameters. For example, if the
spatial impulse response is assumed to be time-invariant, we could
set σ2

wg
= 0, while tuning only the parameter related to the tem-

poral impulse response. In order to evaluate this parameter, let us
rewrite (3) as wh(t) = [h(t)− h(t− 1)] /η. Next, using the `2
norm in both sides of this equation, together with the approximation
‖wh(t)‖22 ≈ Lσ2

wh
(which is valid when L � 1), and replacing

h(t)/η by its estimate ĥ(t), we can evaluate

σ̂2
wh

(t) =
1

L

∥∥∥ĥ(t)− ĥ(t− 1)
∥∥∥2
2
. (20)

As we can notice, the estimation from (20) is designed to achieve
a proper compromise between good tracking and low misalignment.
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Fig. 1: Normalized misalignment of the KF-BF and regular KF for different
types of input signals. The length of the global impulse response is ML =
512. The other parameters are set to σ2

v = 0.01, σ2
wh

= σ2
wg

= σ2
w =

10−9, and ε = 10−5.

When the algorithm starts to converge or when there is an abrupt
change of the system, the difference between ĥ(t) and ĥ(t − 1)
is significant, so that the parameter σ̂2

wh
(t) takes large values, thus

providing fast convergence and tracking. On the other hand, when
the algorithm starts to converge to its steady-state, the difference be-
tween ĥ(t) and ĥ(t − 1) reduces, thus leading to small values of
σ̂2
wh

(t) and, consequently, to a low misalignment.

6. SIMULATION RESULTS

Simulations are performed in the context of system identification, in
order to outline the performance of the proposed KF-BF and SKF-
BF algorithms, as compared to their regular counterparts, i.e., KF
and SKF (introduced in the beginning of Section 5). In our exper-
iments, the temporal impulse response is randomly generated (with
Gaussian distribution) and its length is set to L = 64. The co-
efficients of the spatial impulse response (of length M = 8) are
also randomly generated. Consequently, the length of the spatiotem-
poral (i.e., global) impulse response is ML = 8 × 64 = 512.
In order to evaluate the tracking capabilities of the algorithms, an
abrupt change of the temporal impulse response is simulated in the
middle of all the experiments (by generating a new random vector
of length L = 64, with Gaussian distribution). The input signals
xm(t), m = 1, 2, . . . ,M are either white Gaussian noises (WGNs)
or AR(1) processes [each one of them is generated by filtering a
white Gaussian noise through a first-order system 1/

(
1− 0.8z−1

)
].

The additive noise v(t) is white and Gaussian, with the variance
σ2
v = 0.01; we assume that this parameter is available in all the sim-

ulations. The performance measure is the normalized misalignment
(in dB), to evaluate the identification of the global impulse response.

In Fig. 1, the proposed KF-BF is compared to the regular KF.
The parameters of the algorithms are set to σ2

wh
= σ2

wg
= σ2

w =

10−9. Also, the initialization constant is set to ε = 10−5 for all
the algorithms. It can be noticed from the figure that the proposed
KF-BF achieves a faster convergence rate as compared to the regu-
lar KF, for both types of input signals, having also a better tracking
capability. The gain is more apparent in case of the AR(1) inputs.

The previous experiment is repeated in Fig. 2, comparing the
SKF-BF with its regular counterpart SKF. As we can notice, the
SKF-BF and SKF have a slower convergence rate [especially in case
of AR(1) inputs] as compared to the KF-BF and KF, respectively;
however, the computational complexities of the simplified versions
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Fig. 2: Normalized misalignment of the SKF-BF and regular SKF for dif-
ferent types of input signals. Other conditions same as in Fig. 1.
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Fig. 3: Normalized misalignment of the SKF-BF and regular SKF (for
different types of input signals), using the recursive estimates σ̂2

wh
(t) and

σ̂2
w(t), respectively. The length of the global impulse responses is ML =

512. The other parameters are set to σ2
v = 0.01, σ2

wg
= 0, and ε = 10−5.

are much lower. As expected, the SKF-BF outperforms the SKF in
terms of convergence rate.

In Fig. 3, the performance of the SKF-BF is evaluated, using the
recursive estimation σ̂2

wh
(t) from (20), instead of a constant value as

in the previous experiments. Also, the spatial impulse response is as-
sumed to be time invariant, so that we can set σ2

wg
= 0. For compar-

ison, the regular SKF is involved, using a similar way to estimate its

specific parameter, i.e., σ̂2
w(t) =

∥∥∥f̂(t)− f̂(t− 1)
∥∥∥2
2
/(ML). Due

to the nature of these estimators (as explained in the end of Sec-
tion 5), the algorithms perform now similar to the variable step-size
adaptive filters, achieving both low misalignment and fast tracking.
However, as we can notice in Fig. 3, the proposed SKF-BF still out-
performs the regular SKF in terms of both performance criteria.

7. CONCLUSIONS

In this paper, we have presented the Kalman filter tailored for the
identification of bilinear forms (namely KF-BF), where the bilinear
term has been defined with respect to the impulse responses of the
spatiotemporal model. Also, a simplified version of this algorithm
has been derived, i.e., the SKF-BF, which offers a reduced compu-
tational complexity; the price to pay is a slower convergence rate,
especially for correlated inputs. Simulation results indicate that the
proposed algorithms could represent appealing solutions for such bi-
linear system identification problems.
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