
DISTRIBUTED DIFFUSION ADAPTATION OVER GRAPH SIGNALS

Roula Nassif (1), Cédric Richard (2), Jie Chen (3), Ali H. Sayed (1)

(1)Ecole Polytechnique Fédérale de Lausanne, Switzerland
(2)Université Côte d’Azur, France

(3)Northwestern Polytechnical University, Xi’an, China

ABSTRACT
Most works on graph signal processing assume static graph signals,
which is a limitation even in comparison to traditional DSP
techniques where signals are modeled as sequences that evolve over
time. For broader applicability, it is necessary to develop techniques
that are able to process dynamic or streaming data. Many earlier
works on adaptive networks have addressed problems related to
this challenge by developing effective strategies that are particularly
well-suited to data streaming into graphs. We are thus faced with
two paradigms: one where signals are modeled as static and sitting
on the graph nodes, and another where signals are modeled as
dynamic and streaming into the graph nodes. The objective of this
work is to blend these concepts and propose diffusion strategies for
adaptively learning from streaming graph signals.

Index Terms— Graph signal processing, streaming graph sig-
nals, graph filtering, diffusion strategies.

I. INTRODUCTION
The massive deployment of distributed acquisition and signal

processing systems, as well as the ubiquity of connected devices,
is contributing to the development of graph signal processing.
The potential applications are many and include, for example,
vehicle networks, communication networks, and energy distribution
networks. These connected systems consist of large sets of possibly
autonomous agents linked together by a communication network.
The formalization of graph signal processing as an extension of
classical signal processing creates opportunities for extending and
applying traditional techniques to the network domain. Results have
been obtained on sampling [1]–[4], spectral analysis [5]–[8], and
filtering [9]–[14]. Nevertheless, with few exceptions [4], [12]–[14],
most of these results suffer from one serious limitation; they are
largely focused on processing static graph signals (with respect to
time) despite the natural anchoring in dynamic application contexts.
Some works consider dynamic variations. However, existing studies
are still far from developing a framework that truly parallels the full
potential offered by even the simplest of DSP models, such as MA
or FIR models and adaptive signal processing. These extensions
require the ability to process data that evolve over time. Many ear-
lier works on adaptive networks have actually addressed problems
related to these specific challenges by developing strategies that
can handle streaming data into graphs (see, e.g., [15]–[17] and the
references therein). We are thus faced with two paradigms: one
where signals are modeled as static and sitting on the graph nodes,
and another where signals are modeled as dynamic and streaming
into the graph nodes.

The objective of this paper is to blend these paradigms by
combining concepts from adaptive networks and graph signal pro-
cessing to propose a framework for the adaptation of graph signals.
In the first part of the work, we propose an adaptive inference
method for streaming graph signals based on the LMS strategy.

The work of C. Richard was partly supported by the ANR and the
DGA, France, (ANR-13-ASTR-0030). The work of A. H. Sayed was also
supported in part by NSF grants CCF-1524250 and ECCS-1407712.

Since this algorithm is centralized, we show how to distribute it
over the graph nodes using the concept of diffusion adaptation [18].
In the second part of the work, we present the performance of
the resulting graph diffusion-LMS algorithm in both the mean and
mean-square sense, as well as its stability. The third part of the
paper illustrates the effectiveness of the method on synthetic and
real datasets.
Notation. We use normal font letters to denote scalars, boldface
lowercase letters to denote column vectors, and boldface uppercase
letters to denote matrices. We use the symbol ⊗ to denote Kro-
necker operation and the symbol Tr(·) to denote the trace operator.
The symbol λmax(·) denotes the maximum eigenvalue of its matrix
argument. The m-th entry of a vector x is denoted by [x]m,
the (m,n)-th entry of a matrix X is denoted by [X]mn, the k-th
row of a matrix X is denoted by [X]k,•.

II. PROBLEM FORMULATION AND CENTRALIZED
LMS

Consider a graph G consisting of a set N of N nodes, labeled
k = 1, . . . , N , and a set E of edges such that if node k is
connected to node `, then (k, `) ∈ E . We are interested in
the analysis of signals distributed on the graph G, defined by
x = [x1, . . . , xN]> ∈ RN , where xk represents the value of the
signal at node k. We denote the graph signal available at time i
by x(i). We assume that G is endowed with a graph-shift operator
defined by a matrix S of size N ×N whose entry sk` is non-zero
only if k = ` or (k, `) ∈ E . Possible choices for the matrix S
are the adjacency matrix [10] and the Laplacian matrix [9]. The
operation Sx is called graph shift and is performed locally at each
node k by linearly combining the samples x` from adjacent nodes,
namely,

∑
`∈Nk

sk`x`, where Nk is the set of neighboring nodes
of k including k itself. It is known that the non-zero entries of Sm

correspond to pairs of nodes that can communicate in m hops [17],
[19]. Therefore, the k-th entry of Smx can be calculated by node
k using the signal samples within m-hops.

We consider linear shift-invariant graph filters defined by z(i) =
Hx(i) where:

H ,
M−1∑
m=0

ho
mS

m, (1)

with {ho
m}M−1

m=0 denoting the filter coefficients and M its order. One
common filtering model for graph signals used in the literature [10],
[14] is to assume that the graph vector x(i) is processed by (1) to
generate the filtered graph vector y(i) as follows:

y(i) =

M−1∑
m=0

ho
mS

mx(i) + v(i), i ≥ 0, (2)

where v(i) = [v1(i), . . . , vN (i)]> is an i.i.d. zero-mean noise
signal with covariance matrix denoted byRv = diag{σ2

v,k}Nk=1 and
independent of any other signal. Observe that model (2) assumes
the instantaneous diffusion of information. That is, node k can
process yk(i) at each time instant i by collecting samples {x`(i)}

4129978-1-5386-4658-8/18/$31.00 ©2018 IEEE ICASSP 2018

that are (M−1)-hops away from it. This instantaneous assumption
is a serious limitation of such models. Specifically, the input-output
relation (2) assumes that the powers of the shift operator, Sm, are
applied to the same graph vector x(i). This is a static assumption
on the graph signal and there is no dynamics or time-evolution
embedded into the model, as is customary in standard FIR or MA
models in DSP filter analysis.

To enrich the model, and to introduce a temporal dimension
into (2), we consider in this work the more general model:

y(i) =

M−1∑
m=0

ho
mS

mx(i−m) + v(i), i ≥M − 1. (3)

In this way, the shift Sm is carried out in m time slots. Observe
how input signal x(i) in (2) is now replaced by x(i−m) in (3).
By retaining the following samples at each node `:

x`(i− 1), [Sx(i− 2)]`, . . . , [S
M−2x(i−M + 1)]`, ∀` ∈ N

only one graph shift is required at each time instant i.
In the following, we assume that the graph signal x(i) is a zero-

mean wide-sense stationary process, i.e., Ex(i) = 0 ∀i and its auto-
correlation sequence Rx(m) , E{x(i)x>(i −m)} is a function
of the time lag m only. To estimate ho , col{ho

0, . . . , h
o
M−1}, we

consider the mean-square-error criterion

J(h) = E‖y(i)−Xs(i)h‖2, (4)

where Xs(i) is an N ×M matrix given by:

Xs(i) , [x(i),Sx(i− 1), . . . ,SM−1x(i−M + 1)]. (5)

By setting the gradient vector of J(h) to zero, the optimal
parameter vector ho can be found by solving:

RXh
o = rXy, (6)

where the M×M matrix RX and the M×1 vector rXy are given
by:

RX , E{X>s (i)Xs(i)} and rXy , E{X>s (i)y(i)}. (7)

The (m,n)-th entry of RX is:

[RX]m,n = E{x>(i−m+ 1)(Sm−1)>Sn−1x(i− n+ 1)}
= Tr((Sm−1)>Sn−1Rx(m− n)). (8)

Similarly, the m-th element of rXy is:

[rXy]m = Tr((Sm−1)>Rxy(m− 1)), (9)

where Rxy(m) , E{y(i)x>(i−m)} denotes the cross correlation
function, which is independent of the time index i.

It is sufficient for the exposition in this work to assume that RX

is positive definite. In this case, ho can be determined uniquely
by solving (6). Alternatively, ho can be sought iteratively using
gradient descent:

hcent(i+ 1) = hcent(i) + µ
(
rXy −RXh

cent(i)
)
, (10)

where µ > 0 is a small step-size and where the superscript
“cent” is used to refer to the centralized solution. Since the second
order moments are rarely available beforehand, it is necessary to
approximate them via instantaneous approximations, with different
constructions leading to different adaptive algorithms. One of the
simplest choices is to use the instantaneous approximations:

RX ≈X>s (i)Xs(i) rXy ≈X>s (i)y(i). (11)

Algorithm (10) then leads to the following LMS graph filter:

hcent(i+ 1) = hcent(i) + µX>s (i)
(
y(i)−Xs(i)hcent(i)

)
. (12)

The stochastic-gradient algorithm (12) is referred to as the central-
ized graph-LMS algorithm. In this centralized solution, each node
at each iteration sends its samples {yk(i), xk(i)} to a fusion center,
which in turn updates hcent(i) according to (12).

III. GRAPH DIFFUSION LMS SOLUTION
From (3), the sample yk(i) at node k is related to the graph

signal x(i) according to:

yk(i) =

M−1∑
m=0

ho
m[Smx(i−m)]k + vk(i), i ≥M − 1. (13)

Let z(i−m) , Smx(i−m), and let zk(i) be the M × 1 vector:

zk(i) , col {[z(i)]k, [z(i− 1)]k, . . . , [z(i−M + 1)]k} . (14)

This vector aggregates the k-th entries of the vectors {z(i −
m)|m = 1, . . . ,M − 1}. As explained in the previous section
when introducing the linear model (3), by retaining the samples
{Sm−1x(i − m)|m = 1, . . . ,M − 1} at each node ` ∈ N
from the previous iteration, this vector can be computed locally
at node k and iteration i by collecting samples from the immediate
neighborhood. Let Rz,k denote the M ×M covariance matrix of
zk(i), namely, Rz,k , E{zk(i)z>k (i)}. It can be verified that the
(m,n)-th element of Rz,k is given by:

[Rz,k]m,n = E{[z(i−m+ 1)]k[z(i− n+ 1)]k}
= Tr([Sm−1]>k,•[S

n−1]k,•Rx(m− n)) (15)

where RX =
∑N

k=1Rz,k.
Relation (13) can be written alternatively as:

yk(i) = z>k (i)ho + vk(i), i ≥M − 1. (16)

The global cost (4) becomes:

J(h) =

N∑
k=1

Jk(h), (17)

where Jk(h) is the local cost at agent k given by:

Jk(h) , E|yk(i)− z>k (i)h|2. (18)

In the following, we explain how the parameter vector ho can
be estimated by each node k from the data {yk(i),zk(i)} in a
distributed manner through local computations and communications
among neighboring agents.

There are several distributed techniques that can be employed to
minimize (17) in a fully decentralized manner [15]–[18], [20], [21].
Diffusion strategies [15]–[18] are attractive since they are scalable,
robust, and enable continuous learning and adaptation in response
to drifts in the location of the minimizer. There are two variations
of the adaptive diffusion strategies, namely, the adapt-then-combine
(ATC) and the combine-then-adapt (CTA). Let hk(i) denote the
estimate of ho at node k and iteration i. The ATC diffusion LMS
for minimizing (17) takes the following form at each agent k:

(ATC)

 ψk(i+ 1) = hk(i) + µkzk(i)(yk(i)− z>k (i)hk(i))

hk(i+ 1) =
∑
`∈Nk

a`kψ`(i+ 1)

(19)
where µk > 0 is a local step-size parameter and {a`k} are non-
negative coefficients chosen to satisfy:

a`k > 0,

N∑
`=1

a`k = 1, and a`k = 0 if ` /∈ Nk. (20)

Conditions (20) imply that the matrix A , [a`k] is left-stochastic.
The ATC diffusion (19) consists of two steps. The first step is

4130

an adaptation step where agent k uses its own data to update
its parameter vector hk(i) to an intermediate value ψk(i + 1).
The second step is a combination step where the intermediate
estimates {ψ`(i + 1)} from the neighborhood of agent k are
combined through the combination coefficients {a`k} to obtain the
updated weight estimate hk(i+1). A similar implementation can be
obtained by switching the order of the adaptation and combination
steps. In the CTA implementation, agent k first combines the
previous estimates of its neighbors to obtain the intermediate
estimate ψk(i), and then updates this intermediate estimate using
its data:

(CTA)

 ψk(i) =
∑
`∈Nk

a`kh`(i)

hk(i+ 1) = ψk(i) + µkzk(i)(yk(i)− z>k (i)ψk(i)).
(21)

In terms of communication steps, the CTA form is advantageous
since the exchange of data required to compute zk(i) in (14) can be
done simultaneously with the exchange of past estimates to perform
the combination step in (21). The ATC form (19) requires two
communication steps: i) exchanging data to compute zk(i), and ii)
exchanging {ψ`(i+ 1)} to perform the combination step. In terms
of steady-state performance, it is shown in [15, Sec. 7] that the
ATC has a slight performance advantage over CTA.

IV. STOCHASTIC BEHAVIOR
In the following, we briefly present the main results obtained

from the analysis in the mean-square-error sense of the adaptive
algorithms in (19) and (21). Strategies (19) and (21) can be grouped
into a unifying description by considering the following structure
in terms of two sets of combination coefficients {a1,`k, a2,`k} [16],
[18]:

φk(i) =
∑
`∈Nk

a1,`kh`(i)

ψk(i+ 1) = φk(i) + µkzk(i)(yk(i)− z>k (i)φk(i))

hk(i+ 1) =
∑
`∈Nk

a2,`kψ`(i+ 1).

(22)

The quantities {φk(i),ψk(i)} are intermediate variables, while the
nonnegative entries of the N × N matrices A1 , [a1,`k] and
A2 , [a2,`k] are assumed to satisfy the same conditions (20). The
choice A1 = IN and A2 = A corresponds to the ATC form (19),
while the choice A1 = A and A2 = IN corresponds to the CTA
form (21).

Using the data model (16) and following the same line of
reasoning as in [18, Sec. 6], we find that the network error vector
defined as h̃(i) , col{ho − hk(i)}Nk=1 evolves according to:

h̃(i+ 1) = B(i)h̃(i)−A>2 Mpzv(i), (23)

where B(i) , A>2 (IMN−MRz(i))A>1 , A1 , A1⊗IM , A2 ,
A2⊗IM , M , diag{µk}Nk=1, pzv(i) , col{zk(i)vk(i)}Nk=1, and
Rz(i) , diag{zk(i)z>k (i)}Nk=1.

To perform the analysis, we introduce the following assumption.

Assumption 1. The regressors zk(i) arise from a zero-mean
random process that is temporally white with covarianceRz,k > 0.

This independence assumption is commonly used when ana-
lyzing the performance of diffusion LMS strategies [18, Sec. 6].
Although this assumption is not true in the current work, it is
commonly used to analyze adaptive constructions since it allows
to simplify the derivations without constraining the conclusions.
There are several results in the adaptation literature that show
that the performance results obtained under this independence
assumption match well the actual performance when the step-sizes
are sufficiently small [22, App. 24.A]. It is worth noting that several
works studying the diffusion strategies under partial observation

scenario and singular covariance matrices exist in the literature [16].
It is sufficient for the exposition in this article to present the results
in the case of non-singular covariance matrices Rz,k.

Taking expectations of both sides of (23), we obtain:

Eh̃(i+ 1) = BEh̃(i), (24)

where B , A>2 (IMN −MRz)A>1 and Rz , diag{Rz,k}Nk=1.
We used the fact that Epzv(i) = 0, and h̃(i) and Rz(i) are
independent of each other in view of Assumption 1. It turns
out that all the estimates {hk(i)} across the network converge
asymptotically in the mean to the optimal solution ho if B is stable,
i.e., ρ(B) < 1. The stability of B is ensured if {µk} satisfy [18]:

0 < µk < 2/λmax(Rz,k). (25)

We complete the performance analysis by characterizing the
evolution of the mean-square-error quantity E‖h̃(i)‖2Σ, where Σ
is a positive semi-definite matrix that we are free to choose. Using
the independence Assumption 1, we obtain from (23):

E‖h̃(i+ 1)‖2Σ = E‖h̃(i)‖2Σ′ + E‖A>2 Mpzv(i)‖2Σ, (26)

where
Σ′ , E{B>(i)ΣB(i)}.

The second term on the RHS of (26) can be written as [18]:

E‖A>2 Mpzv(i)‖2Σ = Tr(ΣG) (27)

where G , A>2 MSMA2 and S , E{pzv(i)p>zv(i)} =
diag{σ2

v,kRz,k}Nk=1. Let σ , vec(Σ) denote the vector represen-
tation of Σ obtained by stacking the column entries of Σ on top of
each other. Let σ′ , vec(Σ′). The vector σ′ can be related to σ
according to σ′ = Fσ [18] where F , E{B>(i)⊗B>(i)}. The
evaluation of F requires knowledge of the fourth order moments
of the graph signals, which are not available under the current
assumptions. A common alternative is to use the approximation
F ≈ B> ⊗ B> for sufficiently small step-sizes [18]. As long as
this approximation is reasonable, the stability of F is ensured if
ρ(B) < 1, i.e., if the step-sizes are chosen according to (25). The
variance relation (26) can be written as:

E‖h̃(i+ 1)‖2σ = E‖h̃(i)‖2Fσ + [vec(G)]>σ, (28)

where the notation ‖x‖2σ is used to denote the same quantity
‖x‖2Σ = x>Σx. The variance E‖h̃(i)‖2Σ converges if F is stable:

lim
i→∞

E‖h̃(i)‖2σ = [vec(G)]>(I −F)−1σ. (29)

Finally, the learning curve ζ(i) , E‖h̃(i)‖2σ can be obtained from
recursion (28) [18]. Iterating (28) starting from i = 0, we obtain:

ζ(i+ 1) = E‖h̃(0)‖2Fi+1σ + [vec(G)]>
i∑

j=0

Fjσ. (30)

Comparing (30) at time instant i+ 1 and i, we obtain:

ζ(i+ 1) = ζ(i) + E‖h̃(0)‖2(F−I)Fiσ + [vec(G)]>F iσ. (31)

V. EXPERIMENTAL RESULTS
V-A. Illustrative example

We tested the graph diffusion LMS strategies (19) and (21) on
a random connected graph of N = 20 nodes generated with an
Erdös-Renyi topology shown in Fig. 1 (left). Using a similar con-
struction as in [13], this graph was obtained by generating an N×N
symmetric matrix S whose entries are governed by the Gaussian
distribution N (0, 1) and then thresholding edges to be between 1.2
and 1.8 in absolute value to yield an effective probability of an edge

4131

Iteration i
0 100 200 300 400 500 600 700 800 900 1000

M
S
D

in
d
B

-35

-30

-25

-20

-15

-10

-5

0

5

Simulated transient MSD
Theoretical transient MSD
Theoretical steady-state MSD

7 = 0:057 = 0:1 7 = 0:025

Y: -32.48

Y: -28.43

Y: -24.06

Iteration i
0 100 200 300 400 500 600 700 800 900 1000

M
S
D

in
d
B

-35

-30

-25

-20

-15

-10

-5

0

5

Simulated transient MSD
Theoretical transient MSD
Theoretical steady-state MSD

7 = 0:057 = 0:1 7 = 0:025

Y: -31.34

Y: -26.8

Y: -21.96

Fig. 1. (Left) Erdös-Renyi graph. (Middle) Network MSD: ATC algorithm (19). (Right) Network MSD: CTA algorithm (21).

35

40

45

50

55

60

65

70

75

80

Iteration, i #104
1 2 3 4 5 6

M
S
D

in
d
B

-25

-20

-15

-10

-5

0

5

Simulated MSD (ATC)
Simulated MSD (CTA)

Day d of the year 2014
100 120 140 160 180 200 220 240 260 280 300

R
ec

on
s.

er
ro

r
in

d
B

-28

-26

-24

-22

-20

-18

-16

-14

-12

-10

Recons. error (ATC)
Recons. error (CTA)

Fig. 2. (Left) Temperature measured by 125 weather stations across the US on May 1, 2003. (Middle) Network MSD w.r.t. the minimizer
of (33) using data measured from 2003 to 2013. (Right) Reconstruction error over data measured from April 1, 2014 to October 31, 2014.

p ≈ 0.07. The edges were soft-thresholded by 1.1 to be between
0.1 and 0.7 in magnitude. The shift matrix S was normalized by
1.1 times its largest eigenvalue. We assumed that the graph signal
process x(i) = [x1(i), . . . , xN (i)]> is i.i.d. Gaussian with zero
mean and covariance matrix Rx where Rx was chosen as the
solution of the Lyapunov equation SRxS

> −Rx + I = 0. The
noise v(i) = [v1(i), . . . , vN (i)]> was zero-mean Gaussian with
covariance Rv = diag{σ2

v,k}Nk=1 where the variances σ2
v,k were

randomly generated from the uniform distribution U(0.1, 0.15).
The filter degree M was set to 3 and the coefficients ho

m of this filter
were randomly generated from the uniform distribution U(0, 1).

We ran algorithms (19) and (21) by setting a`k = 1/|Nk| for
` ∈ Nk, where | · | denotes the cardinality of its entry. We used
a constant step-size µ for all agents. The results were averaged
over 200 Monte-Carlo runs. The network MSD performance of the
ATC algorithm (19) (Fig. 1 (middle)) and the CTA algorithm (21)
(Fig. 1 (right)), given by 1

N

∑N
k=1 E‖h

o − hk(i)‖2, is shown for
three different values of µ. For each case, we report the theoretical
transient MSD (31), the theoretical steady-state MSD (29), and
the simulated MSD. We observe that the theoretical curves match
well the actual performance and that the ATC algorithm (19)
outperforms the CTA strategy (21).

V-B. Prediction in temperature sensor networks
We tested algorithms (19) and (21) on a temperature dataset

corresponding to a collection of daily average temperature mea-
surements taken from 2003 to 2013 (a total of D = 4018 days) at
N = 125 weather stations located around the continental United
States [23]. These stations were represented with a directed 6-
nearest neighbor distance graph, in which every sensor corresponds
to a vertex and is connected to 6 closest sensors [24] by directed
edges weighted by:

sk` =
e−d2k`√∑

m∈Nk
e−d2

km
∑

n∈N`
e−d2

`n

, ` ∈ Nk, (32)

where dk` denotes the geodesical distance between the k-th and the
`-th sensors – See Fig. 2 (left). Let yd denote the graph signal at

day d, d = 1, . . . , D. Given the graph signal yd+1 at day d+1 and
the graph signals at previous days {yd−m,m = 0, . . . ,M − 1},
the objective is to estimate the filter coefficients {ho

m} such that
the empirical cost [13]:

Je(h) =
1

D −M

D−1∑
d=M

∥∥∥∥∥yd+1 −
M−1∑
m=0

hmS
myd−m

∥∥∥∥∥
2

, (33)

is minimized. The filter degree M was set to 5. We ran al-
gorithms (19) and (21) by setting µk = 10−5 for all k. We
assumed symmetric combination coefficients when performing the
combination step. We set a`k = 1/max{|N̄k|, |N̄`|} if k 6= ` and
` ∈ N̄−k , akk = 1 −

∑
`∈N̄−

k
a`k, and a`k = 0 if ` /∈ N̄k, where

N̄k , {m, skm 6= 0 and smk 6= 0} and N̄−k , N̄k \ k. We ran
algorithms (19) and (21) for i ≥ M over ne = 15 epochs where
we set in the model (3) y(i) = yd+1 for i = 0, . . . , neD − 1,
where d = i mod D, with mod the modulo operator, and
x(i − m) = y(i − m − 1). Note that, the implementation in
this section is the so-called empirical stochastic gradient descent
implementation where the number of samples is finite [25]. In Fig. 2
(middle) we illustrate the network MSD performance with respect
to the minimizer of the cost (33) and in Fig. 2 (right) we illustrate
the reconstruction error defined as

1

N

N∑
k=1

|[yd+1 −
∑M−1

m=0 hk,m(∞)Smyd−m]k|2

|[yd+1]k|2
(34)

where hk,m(∞) is the steady-state (last) estimate of ho
m reached

by node k, applied to a new set of daily temperature data recorded
from April 1, 2014 to October 31, 2014 (a total of N = 214 days).
The same performance is observed for the ATC (19) and CTA (21).

VI. CONCLUSION
Most prior literature on graph signal processing is concerned

with graph signals that are static with respect to time. In the current
work, we developed diffusion strategies for adaptive graph signal
processing, which allow the model to handle dynamic scenarios. We
presented briefly the performance of the strategies and validated the
theoretical models by experiments.

4132

VII. REFERENCES
[1] S. Chen, R. Varma, A. Sandryhaila, and J. Kovačević, “Dis-

crete signal processing on graphs: Sampling theory,” IEEE
Trans. Signal Process., vol. 63, no. 24, pp. 6510–6523, Dec.
2015.

[2] A. Anis, A. Gadde, and A. Ortega, “Efficient sampling set
selection for bandlimited graph signals using graph spectral
proxies,” IEEE Trans. Signal Process., vol. 64, no. 14, pp.
3775–3789, Jul. 2016.

[3] M. Tsitsvero, S. Barbarossa, and P. Di Lorenzo, “Signals
on graphs: Uncertainty principle and sampling,” IEEE Trans.
Signal Process., vol. 64, no. 18, pp. 4845–4860, Sep. 2016.

[4] P. Di Lorenzo, P. Banelli, S. Barbarossa, and S. Sardellitti,
“Distributed adaptive learning of graph signals,” IEEE Trans.
Signal Process., vol. 65, no. 16, pp. 4193–4208, Aug. 2017.

[5] B. Girault, P. Gonçalves, and E. Fleury, “Translation on
graphs: An isometric shift operator,” IEEE Signal Process.
Lett., vol. 22, no. 12, pp. 2416–2420, Dec. 2015.

[6] N. Perraudin and P. Vandergheynst, “Stationary signal pro-
cessing on graphs,” IEEE Trans. Signal Process., vol. 65, no.
13, pp. 3462–3477, Jul. 2017.

[7] S. Segarra, A. G. Marques, G. Leus, and A. Ribeiro, “Sta-
tionary graph processes: Nonparametric spectral estimation,”
in Proc. IEEE Sens. Array Multichannel Signal Process.
Workshop (SAM), Jul. 2016, pp. 1–5.

[8] A. G. Marques, S. Segarra, G. Leus, and A. Ribeiro, “Sta-
tionary graph processes and spectral estimation,” Available
as arXiv:1603.04667, Mar. 2016.

[9] D. I. Shuman, S. K. Narang, P. Frossard, A. Ortega, and
P. Vandergheynst, “The emerging field of signal processing on
graphs: Extending high-dimensional data analysis to networks
and other irregular domains,” IEEE Signal Process. Mag., vol.
30, no. 3, pp. 83–98, May 2013.

[10] A. Sandryhaila and J. M. F. Moura, “Discrete signal process-
ing on graphs,” IEEE Trans. Signal Process., vol. 61, no. 7,
pp. 1644–1656, Apr. 2013.

[11] A. Loukas, A. Simonetto, and G. Leus, “Distributed autore-
gressive moving average graph filters,” IEEE Signal Process.
Lett., vol. 22, no. 11, pp. 1931–1935, Nov. 2015.

[12] E. Isufi, A. Loukas, A. Simonetto, and G. Leus, “Autore-
gressive moving average graph filtering,” IEEE Trans. Signal
Process., vol. 65, no. 2, pp. 274–288, Jan. 2017.

[13] J. Mei and J. M. F. Moura, “Signal processing on graphs:
Causal modeling of unstructured data,” IEEE Trans. Signal
Process., vol. 65, no. 8, pp. 2077–2092, Apr. 2017.

[14] R. Nassif, C. Richard, J. Chen, and A. H. Sayed, “A graph dif-
fusion LMS strategy for adaptive graph signal processing,” in
Proc. Asilomar Conf. Signals, Syst., Comput., Pacific Grove,
CA, Oct. 2017.

[15] A. H. Sayed, S. Y. Tu, J. Chen, X. Zhao, and Z. J. Towfic,
“Diffusion strategies for adaptation and learning over net-
works: an examination of distributed strategies and network
behavior,” IEEE Signal Process. Mag., vol. 30, no. 3, pp.
155–171, May 2013.

[16] A. H. Sayed, “Adaptive networks,” Proc. IEEE, vol. 102, no.
4, pp. 460–497, Apr. 2014.

[17] A. H. Sayed, “Adaptation, learning, and optimization over
networks,” Foundations and Trends in Machine Learning,
vol. 7, no. 4-5, pp. 311–801, 2014.

[18] A. H. Sayed, “Diffusion adaptation over networks,” in
Academic Press Library in Signal Processing, Elsevier, Ed.,
vol. 3, pp. 322–454. 2014.

[19] D. K. Hammond, P. Vandergheynst, and R. Gribonval,
“Wavelets on graphs via spectral graph theory,” Appl. Comput.
Harmon. Anal., vol. 30, no. 2, pp. 129 – 150, 2011.

[20] D. P. Bertsekas, “A new class of incremental gradient methods
for least squares problems,” SIAM J. Optim., vol. 7, no. 4,
pp. 913–926, 1997.

[21] S. S. Ram, A. Nedić, and V. V. Veeravalli, “Distributed
stochastic subgradient projection algorithms for convex op-
timization,” J. Optim. Theory Appl., vol. 147, no. 3, pp. 516–
545, 2010.

[22] A. H. Sayed, Adaptive Filters, John Wiley & Sons, NJ, 2008.
[23] J. H. Lawrimore, M. J. Menne, B. E. Gleason, C. N. Williams,

D. B. Wuertz, and R. S. Vose, Global Historical Climatol-
ogy Network–Monthly (GHCN-M). NOAA National Climatic
Data Center, Available: ftp:/ftp.ncdc.noaa.gov/pub/data/gsod.

[24] A. Sandryhaila and J. M. F. Moura, “Discrete signal pro-
cessing on graphs: Frequency analysis,” IEEE Trans. Signal
Process., vol. 62, no. 12, pp. 3042–3054, Jun. 2014.

[25] K. Yuan, B. Ying, S. Vlaski, and A. H. Sayed, “Stochastic
gradient descent with finite samples sizes,” in Proc. IEEE Int.
Workshop Mach. Learn. Signal Process., Salerno, Italy, Sept.
2016, pp. 1–6.

4133

