
TRAINING DEEP NEURAL NETWORKS VIA OPTIMIZATION OVER GRAPHS

Guoqiang Zhang

Center for Audio, Acoustics and Vibration (CAAV)
School of Electrical and Data Engineering

University of Technology Sydney, Australia
Email: guoqiang.zhang@uts.edu.au

W. Bastiaan Kleijn

School of Engineering and Computer Science
Victoria University of Wellington, New Zealand

Email: bastiaan.kleijn@ecs.vuw.ac.nz

ABSTRACT

In this work, we propose to train a deep neural network by distributed
optimization over a graph. Two nonlinear functions are considered:
the rectified linear unit (ReLU) and a linear unit with both lower and
upper cutoffs (DCutLU). The problem reformulation over a graph
is realized by explicitly representing ReLU or DCutLU using a set
of slack variables. We then apply the alternating direction method
of multipliers (ADMM) to update the weights of the network layer-
wise by solving subproblems of the reformulated problem. Empir-
ical results suggest that the ADMM-based method is less sensitive
to overfitting than the stochastic gradient descent (SGD) and Adam
methods.

Index Terms— Deep learning, DNN, optimization, ADMM

1. INTRODUCTION

In the last decade, research on deep learning has made remarkable
progress both in theoretical understanding and in practical applica-
tions (see [1] for an overview). Deep learning interprets data at mul-
tiple levels of abstraction, realized in a computational model with
multiple processing layers. Each layer is composed of a set of sim-
ple nonlinear processing units (referred to as neurons), which aims
to transform the input into progressively more abstract representa-
tions [2, 3]. With the composition of multiple processing layers, the
model is able to produce data representations that are required by
various applications.

In the literature, different types of deep neural networks (DNNs)
have been proposed and applied in different applications. For in-
stance, feedforward neural networks have been successfully applied
in speech recognition [4, 5]. Convolutional neural networks (CNNs)
are popular in computer vision [6, 7]. Recurrent neural networks
(RNNs) have proven to be effective for mapping sequential inputs
and outputs [8, 9].

The common procedure for training a deep neural network is
to iteratively adjust its parameters (referred to as weights) such that
the network approximates the input-output relations with increasing
accuracy, referred to as supervised learning.

The traditional supervised learning approach treats a neural net-
work as a large complex model [1] rather than decomposing it as a
combination of many small nonlinear models. Stochastic gradient
descent (SGD) is usually used to back-propagate gradients from the
top layer down to the bottom layer on a mini-batch and then adjusts
the weights accordingly. In recent years, various advanced meth-
ods have been proposed to use the gradient information smartly for
either fast convergence or automatic parameter adjustment, such as
Adam [10], AdaGrad [11] and RMSprop [12].

Recently, a new supervised learning paradigm has been pro-
posed that decomposes a neural network as a combination of many
small nonlinear models. In [13], the authors firstly proposed to de-
couple the nested structure of DNNs by introducing a set of auxiliary
variables and a set of equality constraints. However, computation
of the gradient is still required in their work to tackle the nonlin-
ear functions of the neurons. The work of [14] avoids the gradi-
ent computation of [13] by using the alternating direction method
of multipliers (ADMM) [15]. One Lagrangian multiplier is intro-
duced in [14] to account for an equality constraint at the top layer.
The other equality constraints introduced by other layers are only
approximated by imposing large quadratic penalty functions. The
resulting updating procedure is more close to the Bregman iteration
than the standard ADMM.

In this paper, we propose to train a deep neural network by
reformulating the problem as an optimization over a factor graph
G = (V, C) [16, 17]. Every node r ∈ V carries a convex function of
its node variable while every factor c ∈ C carries a nonlinear equal-
ity constraint in terms of the node variables connected to the factor.
Our graphic formulation is able to handle rectified linear units (Re-
LUs) (see [18,19]) and linear units with both upper and lower cutoffs
(DCutLUs) at the layer-level. In particular, the ReLUs or DCutLUs
are represented in terms of a set of slack variables, which lead to the
equality constraints in the factor graph.

We apply ADMM to solve the graph-based problem. Differently
from [14], we introduce a set of Lagrangian multipliers, one for each
equality constraint extracted from one layer. Experimental results on
the MNIST dataset demonstrate that the new training method is less
sensitive to overfitting than the SGD and Adam methods. Further,
the performance of the new method on the test data is better than the
SGD and Adam, which may be due to the flexibility of ADMM.

2. ON TRAINING A DEEP NEURAL NETWORK

Suppose we have a sequence of m training samples, represented by
an input matrix D ∈ Rm×nin and an output matrix O ∈ Rm×nout ,
where the q’th row-vectors of D and O form an input-output pair.
Given (D,O), we consider training a deep neural network with the
weights {(Wi, bi)|i = 1, . . . , N} of N layers, where for each i,
Wi ∈ Rni−1×ni is a weight matrix and bi ∈ R1×ni a bias vector. To
match the network with the training samples, we let n0 = nin and
nN = nout. The objective is to find the proper weights {(Wi, bi)}
so that the network maps the input D to the output O as accurately
as possible.

Let us now define the operation of the individual layers. We use
Vi to denote the output of layer i, i ≤ N . We let e be a (column) vec-
tor of ones. Vi, i ≤ N−1, is obtained by performing (element-wise)

4119978-1-5386-4658-8/18/$31.00 ©2018 IEEE ICASSP 2018

nonlinear operation on the matrix product Vi−1Wi+ebi, denoted as
Vi = hi(Vi−1Wi + ebi). The popular forms for the nonlinear func-
tion hi are sigmoid, tanh and ReLU [1]. It is found in [19] that
ReLU leads to fast convergence using SGD as compared to sigmoid
and tanh. We consider ReLU and DCutLU in this paper. Formally,
we define hi in the form of DCutLU as

Vi = min(max(Vi−1Wi + ebi, l), u) i ≤ N − 1, (1)

where the max and min operators are element-wise, and l and u are
the lower and upper threshold, respectively. ReLU is a special case
of DCutLU by letting (l, u) = (0,∞).

The procedure of training the above neural network can be for-
mulated as

min
{Vi,Wi,bi}

[
fN (VN ;O) +

N∑
i=1

gi(Wi, bi)

]
, (2)

where fN measures the difference between the output VN and
the ground truth O, gi is a penalty function on (Wi, bi), and
{Vi,Wi, bi} satisfies (1) and

VN = VN−1WN + ebN . (3)

3. PROBLEM REFORMULATION ONTO A GRAPH

In this section, we reformulate (2)-(3) as an optimization over a fac-
tor graph. We first represent the nonlinear function (1) by introduc-
ing a set of slack variables. Specifically, (1) can be rewritten as

Xi = Vi−1Wi + ebi (4)
Xi + Yi = max(Vi−1Wi + ebi, l) (5)

Xi + Yi + Zi = Vi = min(Xi + Yi, u), (6)

where for each i ∈ {1, . . . , N − 1}, we introduced three slack ma-
trices Xi, Yi and Zi to characterize the effect of the upper and lower
cutoffs of the function at u and l.

Next, we argue that the min and max operators in (5)-(6) can
be expressed in terms of constraints on (Xi, Yi, Zi). To do so, we
introduce two index sets for each layer i:

Ωli = {(q, j)|xi,qj < l} (7)
Ωui = {(q, j)|xi,qj > u}, (8)

where xi,qj is the (q, j) element of Xi. At the moment, one can
think of Ωli and Ωui as two sets that are preset already, imposing
constraints on Xi. We will explain later how to update (Ωli,Ω

u
i)

iteratively. Given a set Ω, we let PΩ(X) denote the subset of the
elements of X specified by the indices of Ω. The max operator in
(5) can be characterized as

PΩl
i
(Xi) < l (9a)

PΩl
i
(Xi) + PΩl

i
(Yi) = l (9b)

PΩ̄l
i
(Xi) ≥ l (9c)

PΩ̄l
i
(Yi) = 0, (9d)

where Ω̄ denotes the complement of Ω. By inspection of (5) and
(6), we conclude that Yi and Zi are decoupled given Xi. The min
operator in (6) can thus be characterized as

Fig. 1. Problem reformulation over a factor graph G = (V, C). ◦ is
a node in V and � is a factor in C. B represents constant inputs to
the graph, where X0 = V0 = D is the data input.

PΩu
i

(Xi) > u (10a)

PΩu
i

(Xi) + PΩu
i

(Zi) = u (10b)

PΩ̄u
i

(Xi) ≤ u (10c)

PΩ̄u
i

(Zi) = 0. (10d)

To briefly summarize, we use the constraints (9) and (10) to replace
the min and max operations in (5)-(6).

Based on the above analysis, the training problem (2)-(3) can be
reformulated as

min
{Wi,bi
Xi,Yi,Zi}

fN (XN;O)+

N∑
i=1

gi(Wi,bi)+

N−1∑
i=1

fi(Xi,Yi,Zi|Ωli,Ωui) (11)

s. t. Xi=(Xi−1+Yi−1+Zi−1)Wi+ebi ∀i=1, . . . ,N, (12)

where (X0, Y0,Z0) = (V0,0,0) and each fi(Xi, Yi,Zi|Ωli,Ωui) can
be taken as a summation of indicator functions, each defined by one
constraint in (9)-(10), given by

fi(Xi,Yi, Zi|Ωli,Ωui)=
[
1P

Ωl
i
(Xi)<l+1P

Ω̄l
i
(Yi)=0+1P

Ω̄l
i
(Xi)≥l

+ 1P
Ωl
i
(Xi)+PΩl

i
(Yi)=l + 1PΩu

i
(Xi)>u + 1PΩ̄u

i
(Zi)=0

+ 1PΩ̄u
i

(Xi)≤u + 1PΩu
i

(Xi)+PΩu
i

(Zi)=u

]
, (13)

where the indicator function 1(·) equals to 0 when its constraint is
satisfied and equals to +∞ otherwise.

Eqn. (11)-(13) define a problem over a factor graph G = (V, C)
(see [16, 17, 20]), where every node r ∈ V carries a (convex) com-
ponent function of (11) and every factor c ∈ C carries an (nonlinear)
equality constraint of (12) (see Fig. 1 for demonstration).

Remark 1. If the ReLU is chosen for layer i of the network, one can
simply ignore Zi and Ωui and let l = 0 in (11)-(13).

4. DISTRIBUTED OPTIMIZATION OVER A GRAPH

We note that (11)-(13) is a nonconvex optimization because of the
nonlinear equality constraints (12). We solve (11)-(13) in an iterative
fashion using ADMM by solving convex subproblems. It is worth
noting that ADMM has already been successfully applied for solving
nonnegative matrix factorization (NMF) [21], which is nonconvex.

4.1. Augmented Lagrangian function

To apply ADMM, we introduce a Lagrange multiplier Λi for the
ith equality constraint in (12). We build an augmented Lagrangian

4120

Table 1. ADMM updating procedure
Initialize: {Ŵi, b̂i, |i = 1, . . . , N}
Repeat

Feed X0 to the DNN and initialize {X̂i, Ŷi, Ẑi, Ω̂li, Ω̂ui }
Let {Λ̂i = 0|i = 1, . . . , N}
For i = N,N − 1, . . . , 1 do

(X̂new
i , Ŷ newi , Ẑnewi)

= arg minLi((Xi, Yi, Zi), (Ŵi, b̂i), Λ̂i|Ωui ,Ωli)
Λ̂newi =ρi(X̂

new
i −(X̂i−1+Ŷi−1+Ẑi−1)Ŵi−eb̂i)

(Ŵnew
i , b̂newi)

= arg minLi((X̂
new
i , Ŷ newi , Ẑnewi), (Wi, bi), Λ̂

new
i |Ωui ,Ωli)

End for
(Ŵi, b̂i) = (Ŵnew

i , b̂newi) for all i
Until some stopping criterion is met

function as

L{ρi}({Xi, Yi, Zi, bi,Wi,Λi}, XN |{Ωli,Ωui })

= fN (XN;O)+

N∑
i=1

gi(Wi,bi)+

N−1∑
i=1

fi(Xi,Yi,Zi|Ωli,Ωui)

+

N∑
i=1

pi,ρi((Xi−1,Yi−1,Zi−1),Xi, (Wi,bi),Λi), (14)

where for each i = 1, . . . , N , pi,ρi(· · ·) is defined as

pi,ρi(· · ·) =
[ρi

2
‖Xi−(Xi−1+Yi−1+Zi−1)Wi−ebi‖2

+〈Λi, Xi−(Xi−1+Yi−1+Zi−1)Wi−ebi〉
]
, (15)

where ρi > 0, (X0, Y0, Z0) = (V0, 0, 0), and 〈·, ·〉 denotes dot
product. We note that differently from the single learning rate of
SGD, each layer i possesses a positive parameter ρi, which can be
treated as a layer-oriented learning rate.

Our objective now is to reach a saddle point of the Lagrangian
function L{ρi} by minimizing over {Xi, Yi, Zi, bi,Wi, }∪XN and
maximizing over {Λi}. A saddle point would satisfy the equality
constraints (12).

4.2. Blockwise parameter updating using ADMM

We now consider optimizing the Lagrangian function L{ρi}. We
follow a similar updating procedure as the SGD and Adam meth-
ods [10]. That is, at each iteration, we initialize all the variables and
index sets of L{ρi} by feedingD to the network through the forward
computation. We then update all the variables of L{ρi} blockwise
through backward computation. Differently from SGD which com-
putes gradient directly, the variables of L{ρi} are updated by solving
small-size optimization problems.

Suppose we finished updating variables of layer i+1 and would
like to update (Xi, Yi, Zi), (Wi, bi) and Λi of layer i. We first sim-
plify L{ρi} by removing irrelevant components,

Li((Xi, Yi, Zi), (Wi, bi),Λi|Ωui ,Ωli)

= pi+1,ρi+1((Xi,Yi,Zi),X̂
new
i+1 , (Ŵi+1, b̂i+1),Λ̂newi+1)

+ pi,ρi((X̂i−1,Ŷi−1,Ẑi−1),Xi, (Wi,bi),Λi) + gi(Wi, bi)

+ fi(Xi,Yi,Zi|Ωli,Ωui), (16)

Table 2. Computing (X̂new
i , Ŷ newi , Ẑnewi) for each i < N in Ta-

ble 1.
Let: (X̂c

i , Ŷ
c
i , Ẑ

c
i)=(X̂i, Ŷi, Ẑi) and (Γ̂xi , Γ̂

y
i , Γ̂

z
i)=(0, 0, 0)

(X̂new
i , Ŷ newi , Ẑnewi)

=arg minLi,βi((Xi, Yi, Zi), (Γ̂
x
i , Γ̂

y
i , Γ̂

z
i), (X̂

c
i , Ŷ

c
i , Ẑ

c
i))

Γ̂x,newi = βi(X̂
new
i − X̂c

i)

Γ̂y,newi = βi(Ŷ
new
i − Ŷ ci)

Γ̂z,newi = βi(Ẑ
new
i − Ẑci)

(X̂c,new
i , Ŷ c,newi , Ẑc,newi) =arg minLi,βi((X̂

new
i , Ŷ newi ,

Ẑnewi), (Γ̂x,newi , Γ̂y,newi , Γ̂z,newi), (Xc
i , Y

c
i , Z

c
i))

(X̂new
i , Ŷ newi , Ẑnewi) = (X̂c,new

i , Ŷ c,newi , Ẑc,newi)

where X̂new
i+1 and Λ̂newi+1 are the new estimate obtained from the com-

putation at layer i + 1. By following the ADMM updating proce-
dure, we first compute (X̂new

i , Ŷ newi , Ẑnewi) by optimizing Li with
(Ŵi, b̂i) and Λ̂i fixed. We then compute Λ̂newi using X̂new

i through
dual ascent. Finally, we compute (Ŵnew

i ,b̂newi) by optimizing Li
with (X̂new

i , Ŷ newi , Ẑnewi) and Λ̂newi fixed. See Table 1 for the up-
dating procedure.

For the top layer i = N , the function LN takes the form:

LN (XN , (WN , bN),ΛN) = fN (XN ;O) + gN (WN , bN)

+ pN,ρN ((X̂N−1,ŶN−1,ẐN−1),XN, (WN,bN),ΛN),

where there is no YN andZN . For this layer, only X̂new
N is computed

by optimizing LN in Table 1.

Remark 2. In (16), (Ŵi+1, b̂i+1) is used instead of (Ŵnew
i+1 , b̂

new
i+1),

which is found to be much more stable through experiments.

4.3. Handling of the indicator function

The function fi(·) in (16) is composed of a set of indicator functions,
which makes it difficult to compute (X̂new

i , Ŷ newi , Ẑnewi) in Ta-
ble 1. To facilitate the computation, we introduce the auxiliary vari-
ables (Xc

i , Y
c
i , Z

c
i) to replace (Xi, Yi, Zi) in fi(Xi, Yi, Zi|Ωli,Ωui)

with the constraints Xc
i = Xi, Y ci = Yi and Zci = Zi. We then

apply ADMM again to handle the three equality constraints. To do
so, we build a new augmented Lagrangian as

Li,βi((Xi, Yi, Zi), (Γ
x
i ,Γ

y
i ,Γ

z
i), (X

c
i , Y

c
i , Z

c
i))

= pi+1,ρi+1((Xi,Yi,Zi),X̂
new
i+1 , (Ŵi+1, b̂i+1),Λ̂newi+1)

+ pi,ρi((X̂i−1,Ŷi−1,Ẑi−1),Xi, (Wi,bi),Λi) + gi(Wi, bi)

+fi(X
c
i ,Y

c
i ,Z

c
i |Ωli,Ωui)+

βi
2
‖Xi−Xc

i ‖2 +〈Γxi , Xi−Xc
i 〉

+
βi
2
‖Yi−Y ci ‖2+〈Γyi , Yi−Y

c
i 〉+

βi
2
‖Zi−Zci ‖2+〈Γzi , Zi−Zci 〉,

(17)

where {Γxi ,Γyi ,Γ
z
i } are the Lagrange multipliers, and βi > 0 which

has a similar role as ρi in L{ρi}. We update the three sets of vari-
ables (Xi, Yi, Zi), (Γxi ,Γ

y
i ,Γ

z
i) and (Xc

i , Y
c
i , Z

c
i) one after another

(see Table 2). To reduce the computational time, we only update the
above variables once instead of multiple iterations.

To briefly summarize, at each iteration, the proposed algorithm
performs both forward and backward computations. The forward
computation initializes all variables and index sets while the back-
ward computation updates all the variables and the network weights.

4121

The algorithm has a set of learning rates {ρi}∪{βi}, which provides
great flexibility to fine-tune the algorithm to have fast convergence
(See the first experiment of Section 5 about the parameter setup).

5. EXPERIMENTAL RESULTS

In the simulation, we considered the handwritten-digit recognition
problem by using MNIST with the standard division of the training
(60000 samples) and test (10000 samples) datasets [22]. In doing
so, we built a DNN of three layers (N = 3), where the first and
second hidden layer consists of 500 and 600 neurons, respectively.
The output function was chosen as the summation of the individual
cross-entropy functions ([23]). The function gi(Wi, bi) was chosen
as 0.1

2
‖(Wi, bi)‖2. The mini-batch size was set as 3000. The entire

training dataset thus consisted of 20 minibatches.
We note that the cross-entropy function makes it difficult to

compute X̂new
N analytically in Table 1. When updating the above

variable at each iteration, we approximate each cross-entropy term
by a quadratic function around the most recent estimate, where the
quadratic coefficient is set to 0.05 and the linear coefficient is set to
the gradient.

We evaluated the proposed method (referred to ADMM) with
two proof-of-concept experiments. In the first experiment, we tested
ADMM, SGD and Adam [10] using only the ReLUs. In the second
experiment, we studied how the learning rates {ρi}∪{βi} affect the
convergence speed of ADMM for both ReLUs and DCutLUs.

5.0.1. Comparison with the state-of-the-art

In addition to ADMM, we also evaluated SGD and Adam [10],
where Adam represents the state-of-the-art training method. The
goal is to study the convergence properties of the proposed algo-
rithm. The learning rate of SGD was chosen as 0.3 (producing
stable and fast convergence among {0.1, 0.2, 0.3, 0.4}). Adam was
implemented by following [10] directly. When running SGD and
Adam, the gradient of ReLU at zero is set to 0. Finally the learn-
ing rates of ADMM were set as ρ3 = 0.05, ρ2 = β2 = 0.1 and
ρ1 = β1 = 0.2. The basic principle is to set the learning rates ρi
and βi of layer i slightly larger than ρi+1 and βi+1 of layer i+1. By
doing so, the influence of the layers with lower indices on the clas-
sification performance is enhanced, making the training procedure
more effective.

The experimental results are displayed in Fig. 2 (a). It is seen
that the performance gap of ADMM between the test data and train-
ing data is relatively stable compared to that of Adam and SGD. Fur-
thermore, ADMM performs better than Adam and SGD on the test
data, where the recognition accuracy for the test data at the last iter-
ation is: 98.41(ADMM), 98.23(Adam) and 97.98(SGD). The better
performance of ADMM might be due to the introduction of layer-
oriented learning rates {ρi, βi}.

The computational time of the three methods was measured on
an Apple MacBook Pro and is summarized in Table 3. In general,
ADMM is somewhat more expensive than SGD and Adam because
it consumes more memory due to the auxiliary variables and involves
solving a set of small-size optimization problems per min-batch.

5.0.2. Effect of different learning rates on convergence speed

In this experiment, we studied how the learning rates {ρi, βi} affect
the convergence speed of ADMM for both ReLUs and DCutLUs
(where (l, u) = (0, 1)). To simplifying the evaluation, we let all ρi
and βi to be the same per experiment. For each learning rate, we

Table 3. Average execution times (per mini-batch) and their standard
deviations for the four methods.

SGD (ReLU) Adam (ReLU) ADMM (ReLU) ADMM (DCutLU)

ave. (second) 0.2257 0.2398 0.9373 1.446
std 0.0444 0.0416 0.0851 0.0949

0 50 100

iterations over entire dataset

10
-3

10
-2

10
-1

cr
o

ss
-e

n
tr

o
p

y

SGD-train

SGD-test

Adam-train

Adam-test

ADMM-train

ADMM-test

10
-1

20

40

60

80

100

120

140

160

180

200

220

it
e

ra
ti

o
n

s
o

v
e

r
e

n
ti

re
 d

a
ta

 s
e

t

ADMM-ReLU

ADMM-DCutLU

learning rate (for all i)

(a) (b)

Fig. 2. Performance comparison. Subplot (a) displays the perfor-
mance of SGD, Adam and ADMM using only ReLUs. Subplot (b)
shows the number of iterations over entire training dataset needed to
reach a threshold (0.05) of average cross-entropy for each learning
rate of ADMM.

counted the number of iterations over entire training dataset until the
average cross-entropy reaches 0.05.

The convergence results are displayed in Fig. 2 (b). It is seen
that the learning rate indeed affects the convergence speed. There
exists an optimal value for the learning rate that leads to the fastest
convergence speed for either ReLU or DCutLU operators. Further,
it is observed that ReLU needs significantly fewer iterations than
DCutLU. Table 3 also shows that the computational time of ReLU
is lower than that of DCutLU. This suggests that ReLU is a better
choice in practice.

Remark 3. At the moment, the convergence of the proposed method
is only demonstrated by experiments. We leave the theoretical con-
vergence analysis for future investigation.

6. CONCLUSIONS

We have proposed a new algorithm for training a DNN by perform-
ing optimization over a factor graph. The considered nonlinear units
are the ReLUs and DCutLUs, which allow for analytic representa-
tions by using a set of slack variables. ADMM is then applied to per-
form distributed optimization over the graphic model. Experimental
results indicate that the new algorithm is less sensitive to over-fitting
than two references. One future research direction is to adjust the
learning rates {ρi} and {βi} of the new algorithm automatically,
which likely will lead to reasonable convergence speed for various
learning problems.

4122

7. REFERENCES

[1] Y. LeCun, Y. Bengio, and G. Hinton, “Deep Learning,” Nature,
vol. 521, pp. 436–444, 2015.

[2] M. D. Zeiler and R. Fergus, “Visualizing and un-
derstanding convolutional neural networks,” arXiv preprint
arXiv:1311.2901v3, 2013.

[3] J. Yosinski, J. Clune, A. Nguyen, T. Fuchs, and H. Lipson,
“Understanding Neural Networks Through Deep Visualiza-
tion,” arXiv preprint arXiv:1506.06579v1, 2015.

[4] A.-R. Mohamed, G. E. Dahl, and G. Hinton, “Acoustic Model-
ing Using Deep Belief Networks,” IEEE Trans. Audio Speech
Lang. Process, pp. 14–22, 2012.

[5] G.E. Dahl, D. Yu, L. Deng, and A. Acero, “Context-
Dependent Pre-Trained Deep Neural Networks for Large Vo-
cabulary Speech Recognition,” IEEE Trans. Audio Speech
Lang. Process, vol. 20, pp. 33–42, 2012.

[6] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “ImageNet
Classification with Deep Convolutional Neural Networks,” in
NIPS, 2012.

[7] Y. Taigman, M. Yang, M. Ranzato, and L. Wolf, “Deep Face:
Closing the Gap to Human-Level Performance in Face Verifi-
cation,” in Proc. Conference on Computer Vision and Pattern
Recognition, 2014, pp. 1701–1708.

[8] A. Graves, A.-R. Mohamed, and G. Hinton, “Speech Recog-
nition with Deep Recurrent Neural Networks,” in Proc. of
IEEE International Conference on Acoustics, Speech, and Sig-
nal Processing (ICASSP), 2013, pp. 6645–6649.

[9] I. Sutskever, Q. Vinyals, and Q. V. Le, “Sequence to Sequence
Learning with Neural Networks,” in Advances in Neural Infor-
mation Processing Systems 27, 2014, pp. 3104–3112.

[10] D. P. Kingma and J. L. Ba, “Adam: A method for Stochastic
Optimization,” arXiv preprint arXiv:1412.6980v9, 2017.

[11] J. Duchi, E. Hazan, and Y. Singer, “Adaptive Subgradient
Methods for Online Learning and Stochastic Optimization,”
Journal of Machine Learning Research, vol. 12, pp. 2121–
2159, 2011.

[12] G. Hinton, N. Srivastava and K. Swersky, ,” Lecture Notes on
Introduction to Neural Networks and Machine Learning, 2014.

[13] M. Carreira-Perpinan and W. Wang, “Distributed Optimization
of Deeply Nested Systems,” arXiv:1212.5921 [cs.LG], 2012.

[14] G. Taylor, R. Burmeister, Z. Xu, B. Singh, A. Patel, and
T. Goldstein, “Training Nueral Networks Without Gradients:
A Scalable ADMM Approach,” in Proc. IEEE Int. Conf. Ma-
chine Learning, 2016.

[15] S. Boyd, N. Parikh, E. Chu, B. Peleato, and J. Eckstein, “Dis-
tributed Optimization and Statistical Learning via the Alter-
nating Direction Method of Multipliers,” In Foundations and
Trends in Machine Learning, vol. 3, no. 1, pp. 1–122, 2011.

[16] D. Sontag, A. Globerson, and T. Jaakkola, “Introduction to
Dual Decomposition for Inference,” in Optimization for Ma-
chine Learning. 2011, MIT Press.

[17] O. Meshi and A. Globerson, “An Alternating Direction
Method for Dual MAP LP Relaxation,” in ECML, 2011.

[18] X. Glorot, A. Bordes, and Y. Bengio, “Deep Sparse Rectifier
Neural Networks,” in Proceedings of the 14th International
Conference on Artificial Intelligence and Statistics, 2011, pp.
315–323.

[19] V. Nair and G. E. Hinton, “Rectified Linear Units Improve
Restricted Boltzmann Machines,” in Proceedings of the 27th
International Conference on Machine Learning, 2010.

[20] M. Wainwright and M. Jordan, “Graphical models, exponential
families, and variational inference,” Foundations and Trends in
Machine Learning, vol. 1(1-2), pp. 1–305, 2008.

[21] D. Hajinezhad, T.-H. Chang, X. Wang, Q. Shi, and M. Hong,
“Nonnegative Matrix Factorization Using ADMM: Algorithm
and Convergence Analysis,” in Proc. of IEEE International
Conference on Acoustics, Speech, and Signal Processing,
2016, pp. 4742–4746.

[22] Y. LeCun, C. Cortes, and C. J.C. Burges, “MNIST handwritten
digit database,” http://yann.lecun.com/exdb/mnist/, 2010.

[23] T. M. Cover and J. A. Thomas, Elements of Information The-
ory, Wiley-Interscience, 2nd edition, 2006.

4123

