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ABSTRACT

This work develops a robust diffusion recursive least squares algo-
rithm to mitigate the performance degradation often experienced in
networks of agents in the presence of impulsive noise. This algo-
rithm minimizes an exponentially weighted least-squares cost func-
tion subject to a time-dependent constraint on the squared norm of
the intermediate estimate update at each node. With the help of side
information, the constraint is recursively updated in a diffusion strat-
egy. Moreover, a control strategy for resetting the constraint is also
proposed to retain good tracking capability when the estimated pa-
rameters suddenly change. Simulations show the superiority of the
proposed algorithm over previously reported techniques in various
impulsive noise scenarios.

Index Terms— Diffusion cooperation, distributed algorithms,
impulsive noise, robust recursive least squares.

1. INTRODUCTION

In the last decade, distributed adaptive algorithms for estimating
parameters of interest over wireless sensor networks with multiple
nodes (or agents) have attracted significant attention, due to their per-
formance advantages and robustness [1]. The core idea is that each
node performs adaptive estimation in cooperation with its neighbor-
ing nodes. Distributed adaptive algorithms have been applied to
many problems, e.g., frequency estimation in power grid [2] and
spectrum estimation [3]. According to the cooperation strategy of
interconnected nodes, existing algorithms can be categorized as the
incremental [4], consensus [5,6], and diffusion [7–9] types. The dif-
fusion protocol is the most popular [5] because it does not require a
Hamiltonian cycle path as does the incremental type [4]; it is stable
and has a better estimation performance than the consensus type [5].
Several diffusion-based distributed algorithms have been proposed
such as the diffusion least mean square (dLMS) algorithm [7], diffu-
sion recursive least squares (dRLS) algorithm [8], and their modifi-
cations [10–13].

In practice, measurements at the network nodes can be corrupted
by impulsive noise [14]. Impulsive noise has the property that its oc-
curence probability is small and magnitude is typically much higher
than the nominal measurement. It is well-known that impulsive
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noise deteriorates significantly the performance of many algorithms
in the single-agent case. In addition, for distributed algorithms in
the multi-agent case, impulsive noise can also propagate over the
entire network due to the exchange of information among nodes. To
reduce the effects of impulsive noise, many robust distributed al-
gorithms have been proposed [15–18]. Some algorithms, e.g., the
diffusion sign error LMS (dSE-LMS) [15], are based on using the
instantaneous gradient-descent method to minimize an individual ro-
bust criterion. In [16], a robust variable weighting coefficients dLMS
(RVWC-dLMS) algorithm was developed, which only considers the
data and intermediate estimates from nodes not affected by impul-
sive noise; this is based on a judgement whether impulsive noise
samples occur or not. However, these robust algorithms have slow
convergence, especially for colored input signals at nodes.

RLS-based algorithms have a good decorrelating property for
colored input signals, thereby providing fast convergence. In this pa-
per, therefore, we present a robust dRLS (R-dRLS) algorithm for dis-
tributed estimation over networks disturbed by impulsive noise. The
R-dRLS algorithm minimizes a local exponentially weighted least-
squares (LS) cost function subject to a time-dependent constraint on
the squared norm of the intermediate estimate at each node. Un-
like the framework in [19], we consider here a multi-agent scenario
with the diffusion strategy. Furthermore, in order to equip the R-
dRLS algorithm with the ability to withstand sudden changes in the
environment, we also propose a diffusion-based distributed nonsta-
tionary control (DNC) method. This paper is organized as follows.
In Section 2, the estimation problem in the network is described. In
Section 3, the proposed algorithm is derived. In Section 4, results
of simulation in impulsive noise scenarios are presented. Finally,
conclusions are given in Section 5.

2. PROBLEM FORMULATION

Let us consider a network that has N nodes distributed over some
region in space, where a link between two nodes means that they
can communicate directly with each other. The neighborhood of
node k is denoted by Nk, i.e., a set of all nodes connected to node k
including itself. The cardinality of Nk is denoted by nk. At every
time instant i ≥ 0, every node k observes a data regressor vector
uk,i of size M × 1 and a scalar measurement dk(i), related as:

dk(i) = u
T
k,iw

o + vk(i), (1)

where the superscript T denotes the transpose, wo is a parameter
vector of size M × 1, and vk(i) is the additive noise at node k. The
regressors uk,i and ul,j are spatially independent for k 6= l. The
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additive noises vk(i) and vl(j) are spatially and temporally indepen-
dent for k 6= l and i 6= j. Moreover, any uk,i is independent of any
vl(j). The model in (1) is widely used in many applications [1, 20].

The task is to estimate wo using the available data collected at
nodes, i.e., {uk,i, dk(i)}Nk=1. For this purpose, the global LS-based
estimation problem is described as [8]:

wi = argmin
w{

λi+1δ‖w‖22 +
i∑

j=0

λi−j
N∑
k=1

(
dk(j)− uTk,iw

)2}
,

(2)

where ‖·‖2 denotes the l2-norm of a vector, δ > 0 is a regulariza-
tion constant, and λ is the forgetting factor. The dRLS algorithm
solves (2) in a distributed manner [8]. In practice, vk(i) may con-
tain impulsive noise, severely corrupting the measurement dk(i).
With such noise processes, the algorithms obtained from (2), e.g.,
the dRLS algorithm, would fail to work.

3. PROPOSED DISTRIBUTED ALGORITHM

3.1. Derivation of R-dRLS algorithm

We focus here on the adapt-then-combine (ATC) implementation
of the diffusion strategy, which has been shown to outperform the
combine-then-adapt (CTA) implementation1 [5]. Following the
ATC-diffusion strategy [7, 8], i.e., performing first the adaptation
step and then the combination step, the R-dRLS algorithm will be
derived in the sequel.

We start with the adaptation step. Every node k, at time instant
i, finds an intermediate estimate ψk,i ofwo by minimizing the indi-
vidual local cost function:

Jk(ψk,i) =‖ψk,i −wk,i−1‖2Qk,i
+ [dk(i)− uTk,iψk,i]2,

(3)

withQk,i = Rk,i − uk,iuTk,i, where

Rk,i ,λ
i+1δI +

i∑
j=0

λi−juk,ju
T
k,j

=λRk,i−1 + uk,iu
T
k,i

(4)

is the time-averaged correlation matrix for the regression vector at
node k,wk,i−1 is an estimate ofwo at node k at time instant i− 1,
and I is the identity matrix. Notice that the form ‖x‖2Q , xTQx in
(3) defines the Riemmanian distance [21] between vectors ψk,i and
wk,i−1. Setting the derivative of Jk(ψk,i) with respect to ψk,i to
zero, we obtain

ψk,i = wk,i−1 + Pk,iuk,iek(i), (5)

where ek(i) = dk(i) − uTk,iwk,i−1 stands for the output error at
node k and Pk,i , R−1

k,i . Using the matrix inversion lemma [20],
we have

Pk,i =
1

λ

(
Pk,i−1 −

Pk,i−1uk,iu
T
k,iPk,i−1

λ+ uTk,iPk,i−1uk,i

)
, (6)

where Pk,i is initialized as Pk,0 = δ−1I . Since wk,i−1 =
R−1
k,i−1zk,i−1, where zk,i = λzk,i−1 + uk,idk(i), (5) means

1 In fact, the CTA version is obtained by reversing the adaptation step and
combination step in the ATC version.

that every node k performs an RLS update. However, with the
update (5), the adverse effect of an impulsive noise sample at time
instant i will propagate through nodes via ek(i). This effect can
last for many iterations. To make the algorithm robust in impulsive
noise scenarios, we propose to minimize (3) under the following
constraint:

‖ψk,i −wk,i−1‖22 ≤ ξk(i− 1), (7)

where ξk(i − 1) is a positive bound. This constraint is employed to
enforce the squared norm of the update of the intermediate estimate
not to exceed the amount ξk(i − 1) regardless of the type of noise
(possibly, impulsive noise), thereby guaranteeing the robustness of
the algorithm. If (5) satisfies (7), i.e.,

‖gk,i‖2|ek(i)| ≤
√
ξk(i− 1), (8)

where gk,i , Pk,iuk,i represents the Kalman gain vector, then (5)
is a solution of the above constrained minimization problem. On the
other hand, if (8) is not satisfied (usually in the case of appearance
of impulsive noise samples), i.e., ‖gk,i‖2|ek(i)| >

√
ξk(i− 1) , we

propose to replace the update (5) by a normalized form to satisfy the
constraint (7), which is described by

ψk,i = wk,i−1 +
√
ξk(i− 1)

gk,i
‖gk,i‖2

sign(ek(i)), (9)

where sign(·) is the sign function. Consequently, combining (5), (8)
and (9), we obtain the adaptation step for each node k as:

ψk,i = wk,i−1 +min

[ √
ξk(i− 1)

‖gk,i‖2|ek(i)|
, 1

]
gk,iek(i). (10)

At the combination step, the intermediate estimates ψm,i from
the neigborhood m ∈ Nk of node k are linearly weighed, yielding a
more reliable estimatewk,i [1]:

wk,i =
∑
m∈Nk

cm,kψm,i, (11)

where the combination coefficients {cm,k} are non-negative, and
satisfy: ∑

m∈Nk

cm,k = 1, and cm,k = 0 if m /∈ Nk. (12)

Note that node k assigns a weight cm,k to the intermediate estimate
ψm,i received from its neighbor node m. In general, {cm,k} are
determined by a static rule (e.g., the Metropolis rule [22] that we
adopt in this paper) which keeps them constant in the estimation, or
an adaptive rule [22].

It is evident that the bound ξk(i) controls the robustness of the
algorithm against impulsive noise and influences its dynamic behav-
ior, so choosing its value properly is of fundamental importance. To
this end, motivated by the single-agent case in [19], ξk(i) is adjusted
recursively based on the diffusion strategy as:

ζk(i) =βξk(i− 1) + (1− β) ‖ψk,i −wk,i−1‖22
= βξk(i− 1) + (1− β)min[‖gk,i‖22e2k(i), ξk(i− 1)],

ξk(i) =
∑
m∈Nk

cm,kζm(i),
(13)

where β is a forgetting factor, 0 < β . 1. In (13), at every node k,
ξk(i) can be initialized as ξk(0) = Ecσ

2
d,k/(Mσ2

u,k), where Ec is
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Table 1. Proposed R-dRLS Algorithm with the DNC Method.
Parameters: 0 < β . 1, λ, δ andEc (R-dRLS); % and tth (DNC)

Initialization: wk,0 = 0, Pk,0 = δ−1I and ξk(0) = Ec
σ2d,k

Mσ2
u,k

(R-dRLS)

Θold,k = Θnew,k = 0, Vt = %M , and Vd = 0.75Vt (DNC)
R-dRLS algorithm:
ek(i) = dk(i)− uTk,iwk,i−1

Pk,i =
1
λ

(
Pk,i−1 −

Pk,i−1uk,iu
T
k,iPk,i−1

λ+uT
k,i

Pk,i−1uk,i

)
gk,i = Pk,iuk,i

ψk,i = wk,i−1 + min

[ √
ξk(i−1)

‖gk,i‖2|ek(i)| , 1

]
gk,iek(i)

wk,i =
∑

m∈Nk
cm,kψm,i

DNC method:
Step 1: to compute∆k(i)
if i = nVt, n = 0, 1, 2, ...

aTk,i = O
([

e2k(i)

‖uk,i‖
2
2
,

e2k(i−1)

‖uk,i−1‖
2
2
, ...,

e2k(i−Vt+1)

‖uk,i−Vt+1‖
2
2

])
Θnew,k =

∑
m∈Nk

cm,k
aTm,ie

Vt−Vd

∆k(i) =
Θnew,k−Θold,k

ξk(i−1)

end
Step 2: to reset ξk(i)
if∆k(i) > tth
ζk(i) = ξk(0), Pk,i = Pk,0

elseif Θnew,k > Θold,k
ζk(i) = ξk(i− 1) + (Θnew,k −Θold,k)

else
ζk(i) = βξk(i− 1) + (1− β)min

[
‖gk,i‖22e

2
k(i), ξk(i− 1)

]
end
ξk(i) =

∑
m∈Nk

cm,kζm(i)

Θold,k = Θnew,k

a positive integer, and σ2
d,k and σ2

u,k are powers of signals dk(i) and
uk,i, respectively. The proposed algorithm is shown in Table 1.

Remark: As can be seen from (10), the operation mode of the
proposed algorithm is twofold. At time instant i, if ‖gk,i‖22e2k(i) ≤
ξk(i − 1), the RLS update is performed; if not, the RLS update is
normalized to have a norm of value ξk(i − 1). At the early iter-
ations, the values of ξk(i) can be high compared to ‖gk,i‖22e2k(i)
so that the algorithm will behave as the dRLS algorithm, providing
a fast convergence. Whenever an impulsive noise sample appears,
due to its significant magnitude, the algorithm will work as an dRLS
update multiplied by a very small ’step size’ scaling factor given
by
√
ξk(i− 1)/(‖gk,i‖2|ek(i)|), thus suppressing the negative in-

fluence of impulsive noise on the estimation [23, 24] and reducing
the error propagation effect. The algorithm robustness to impulsive
noise is further maintained due to decreasing ξk(i) over the itera-
tions. This algorithm can be considered as an improved dRLS al-
gorithm with an additional ’step size’ scaling factor which is time-
varying and lies between 1 and

√
ξk(i− 1)/(‖gk,i‖2|ek(i)|), as can

be observed in (10).

3.2. DNC Method

Although the decreasing values of the sequence {ξk(i)} prompt the
R-dRLS algorithm more robust against impulsive noises, the algo-
rithm also loses its tracking capability for a sudden change of the
unknown vector wo. To improve the tracking capability, referring
to the single-agent scenario [25], we also develop a diffusion-based
DNC method summarized in Table 1. The DNC method includes
two steps.

Firstly, a variable∆k(i) at node k is computed once for every Vt
iterations, to judge whether the unknown vector has a change or not.

In this step, aTk,i = O
([

e2k(i)

‖uk,i‖22
,

e2k(i−1)

‖uk,i−1‖22
, ..., e2k(i−Vt+1)

‖uk,i−Vt+1‖22

])

withO(·) denoting the ascending arrangement for its arguments, and
e = [1, ..., 1, 0, ..., 0]T is a vector whose first Vt−Vd elements set to
one, where Vd is a positive integer with Vd < Vt. Thus, the product
aTk,ie can reduce the effect of outliers (e.g., impulsive noise samples)
when computing∆k(i). Typically, for both Vt and Vd, good choices
are Vt = %M with % = 1 ∼ 3 and Vd = 0.75Vt [25]. Note that, for
larger occurence probability of impulsive noise, the value of Vt−Vd
should be decreased to discard the impulsive noise samples.

Secondly, if ∆k(i) > tth, where tth is a predefined threshold,
meaning a change ofwo has occured, then we need to reset ξk(i) to
its initial value ξk(0). More importantly, Pk,i is also re-initialized
with Pk,0. It is worth noting that since the parameters γ, Nw, %,
and tth are not affected by each other, their choices are simplified.

4. SIMULATION RESULTS

Simulation examples are presented for a diffusion network withN =
20 nodes. The vectorwo to be estimated has a length ofM = 16 and
a unit norm; it is generated randomly from a zero-mean uniform dis-
tribution. To evaluate the tracking capability,wo changes to−wo in
the middle of iterations. The input regressor uk,i has a shifted struc-
ture, i.e., uk,i = [uk(i), uk(i − 1), ..., uk(i −M + 1)]T [4, 26],
where uk(i) is colored and generated by a second-order autoregres-
sive system:

uk(i) = 1.6uk(i− 1)− 0.81uk(i− 2) + εk(i),

where εk(i) is a zero-mean white Gaussian process with variance
σ2
ε,k shown in Fig. 1(a) for all the nodes. We employ the averaged

network mean square deviation (MSD) to assess the performance of

the algorithm, i.e., MSDnet(i) = 1
N

N∑
k=1

E{‖wo − wk,i‖22}, where

E{·} denotes the expectation. Usually, the impulsive noise can be
described by either the Bernoulli-Gaussian (BG) process [15–17] or
the α-Stable process [21,27]. We consider both the cases. All results
are the average over 200 independent trials2.
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Fig. 1. Profiles of σ2
ε,k and σ2

θ,k.

4.1. BG Process

The additive noise vk(i) includes the background noise θk(i) plus
the impulsive noise ηk(i), where θk(i) is zero-mean white Gaussian

2 Here, for a fair comparison, the diffusion algorithms do not consider
information exchange in the adaptation step, except the RVWC-dLMS.
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noise with variance σ2
θ,k depicted in Fig. 1(b). The impulsive noise

ηk(i) is described by the BG process, ηk(i) = bk(i) · gk(i), where
bk(i) is a Bernoulli process with probability distribution P [bk(i) =
1] = pr,k and P [bk(i) = 0] = 1− pr,k , and gk(i) is a zero-mean
white Gaussian process with variance σ2

g,k. Here, we set pr,k as a
random number in the range of [0.001, 0.05], and σ2

g,k = 1000σ2
y,k,

where σ2
y,k denotes the power of yk(i) = uTk,iw

o. Fig. 2 compares
the performance of the dRLS, dSE-LMS, and RVWC-dLMS algo-
rithms with that of the proposed R-dRLS algorithm. Note that, the
R-dRLS (no cooperation) algorithm performs an independent esti-
mation at each node as presented in [19]. For RLS-type algorithms,
we choose λ=0.995 and δ=0.01. As expected, the dRLS algorithm
has a poor performance in the presence of impulsive noise. Both the
dSE-LMS and RVWC-dLMS algorithms are significantly less sensi-
tive to impulsive noise, but their convergence is slow. Apart from the
robustness against impulsive noise, the proposed R-dRLS algorithm
has also a fast convergence. Moreover, the proposed DNC method
can retain the good tracking capability of the R-dRLS algorithm,
only with a slight degradation in steady-state performance.
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dB
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R−dRLS(no cooperation)
dRLS
dSE−LMS
RVWC−dLMS
R−dRLS

without DNC method

with DNC method

Fig. 2. Averaged network MSD performance of the algorithms in
impulsive noise with BG process. Parameter setting of the algo-
rithms (with notations from references) is as follows: µk=0.015
(dSE-LMS); β=0.98 and Ec=1 (R-dRLS); %=3 and tth=25 (DNC).
For the RVWC-dLMS, the Metropolis rule [22] is also used for the
combination coefficients in the adaptation step; its other parameters
are L=16, α=2.58, λ=0.98 and µk=0.03.

4.2. α-Stable Process

The impulsive noise is now modeled by the α-stable process with a
characteristic function ϕ(t) = exp(−γ|t|α), where the character-
istic exponent α ∈ (0, 2] describes the impulsiveness of the noise
(smaller α leads to more impulsive noise samples) and γ > 0 repre-
sents the dispersion level of the noise. In particular, when α = 2, it
reduces to the Gaussian noise. It is rare to find α-stable noise with
α < 1 in practice [21, 28]. In this example, thus we set α = 1.15
and γ = 1/15. The learning performance of the algorithms is shown
in Fig. 3. Fig. 4 shows the node-wise steady-state MSD of the ro-
bust algorithms (i.e., excluding the dRLS) against impulsive noise,
by averaging over 500 instantaneous MSD values in the steady-state.
As can be seen from Figs. 3 and 4, the proposed R-dRLS algorithm

with DNC outperforms the known robust algorithms.
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Fig. 3. Averaged network MSD performance of the algorithms in
α-Stable noise. Parameter setting is the same as in Fig. 2.
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Fig. 4. Node-wise steady-state MSD of the algorithms in α-Stable
noise.

5. CONCLUSION

In this paper, the R-dRLS algorithm has been proposed, based on
the minimization of an individual RLS cost function with a time-
dependent constraint on the squared norm of the intermediate esti-
mate update. The constraint is dynamically adjusted based on the
diffusion strategy with the help of side information. The novel algo-
rithm not only is robust against impulsive noise, but also has fast con-
vergence. Furthermore, to track the change of parameters of inter-
est, a detection method (DNC method) is proposed for re-initializing
the constraint. Simulation results have verified that the proposed al-
gorithm performs better than known algorithms in impulsive noise
scenarios.
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