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ABSTRACT
Existing methods for constructing separable 2D dictionary filter
banks approximate a set of K non-separable filters via a linear com-
bination of R � K separable filters. This approach involves the
inefficiency of learning an initial set of non-separable filters, and
places an upper bound on the quality of the separable filter banks.
In this paper, we propose a method to directly learn a set of K sep-
arable dictionary filters from a given image training set by drawing
ideas from convolutional dictionary learning (CDL) methods. We
show that the separable filters obtained by our method match the
performance of an equivalent number of non-separable filters. Fur-
thermore, the computational performance of our learning method is
shown to be substantially faster than a state-of-the-art non-separable
CDL method for large numbers of filters or large training sets.

Index Terms— Convolutional Sparse Representation, Dictio-
nary Learning, Separable filters

1. INTRODUCTION

Sparse representations and dictionary learning are well-known tech-
niques in the field of signal and image processing, yielding effec-
tive approaches in tasks such as denoising, object recognition, and
machine learning applications [1]. In particular, convolutional for-
mulations, which model an image as a sum over a set of convolu-
tions between coefficient maps and dictionary filters, have received
increasing attention for their ability to represent whole images, as
opposed to their patch-based counterparts [2]. The most common
form of Convolutional Sparse Coding (CSC) problem is Convolu-
tional Basis Pursuit Denoising (CBPDN)

min
{xk}

1

2

∥∥∥ K∑
k=1

Dk ∗ xk − b
∥∥∥2
2
+ λ

K∑
k=1

‖xk‖1 , (1)

where b is the observed image, {xk} is the coefficient map set, and
{Dk} are the non-separable dictionary filters. The corresponding
Convolutional Dictionary Learning (CDL) problem is

min
{Dk,xk,s}

1

2

S∑
s=1

∥∥∥ K∑
k=1

Dk ∗ xk,s − bs

∥∥∥2
2
+ λ

S∑
s=1

K∑
k=1

∥∥xk,s∥∥1
s.t. ‖Dk‖2 = 1 ∀k , (2)

where {bs} is the set of training images.
It has been shown [3, 4] that using separable filters as dictionar-

ies in tasks such as CSC or Convolutional Neural Network (CNN)
applications provides significant improvements in computational
performance with respect to non-separable implementations, with
little loss in accuracy or reconstruction quality. In general, most of
these methods rely on learning the separable filter set as an approxi-
mation of a previously obtained set of non-separable filters, by using

the equivalence

Dk ≈
R∑
r=1

αkrGr k ∈ {1, 2, . . . ,K} , (3)

which represents each non-separable filter {Dk} as a linear combi-
nation of a smaller number of separable filters {Gr}, where R <<
K [5]. This approach, however, depends heavily on the quality of
the originating non-separable filters to obtain a good separable ap-
proximation. Furthermore, it implies a two step procedure: learning
first the whole set of standard filters, and only then approximating
the separable ones.

In this paper, we present an algorithm to directly learn the sepa-
rable filters from the image training set by solving

min
{hr,vr,xr,s}

1

2

S∑
s=1

∥∥∥ R∑
r=1

vr ∗ hr ∗ xr,s − bs

∥∥∥2
2
+ λ

S∑
s=1

R∑
r=1

‖xr,s‖1

s.t. ‖hr‖2 = ‖vr‖2 = 1 ∀r , (4)

where R = K, and {hr} and {vr} are the horizontal and vertical
components of each filter. The proposed method is derived as a nat-
ural extension of a well known CDL algorithm [2], and compared
against both standard non-separable dictionaries and separable ap-
proximations learned via (3). The computational results in Section 4
show that the separable filter banks obtained by our method provide
superior performance to the approximated filter banks of the same
size (i.e. the same number of filters) when evaluated via a standard
CBPDN problem. Furthermore, the computational runtime of our
learning algorithm is shown to be faster than standard non-separable
learning approaches for most configurations.

2. PREVIOUS RELATED WORK

2.1. Non-separable (standard) dictionary learning

CDL problem (2) is non-convex when dealing with both variables
({xk,s} and {Dk}) simultaneously, but becomes convex when keep-
ing either of them constant. Therefore, the most widely used min-
imization approach consists in alternating between the updates for
the feature maps {xk,s} (sparse coding) and the filters {Dk} (dic-
tionary learning). This section will address the main existing dictio-
nary learning update methods1, which require solving a constrained
convolutional form of the Method of Optimal Directions (MOD) [8]

min
{Dk}

1

2

S∑
s=1

∥∥∥ K∑
k=1

Dk ∗ xk,s − bs

∥∥∥2
2

s.t. ‖Dk‖2 = 1 ∀k , (5)

1See [6, 7] for a thorough review and comparison of sparse coding and
dictionary learning updates and their coupling mechanisms.
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where {xk,s} is a given coefficient map set.
Early methods solved this problem in the spatial domain, via

variants of gradient descent [9] and MOD [10], among others [11,
12]. More recent implementations solve the most computationally
demanding components of the problem in the frequency domain due
to the associated speedup [7]. When performing the convolutions
in the frequency domain, the filters must be zero-padded in order to
have an adequate spatial support. This requirement can be denoted
by a zero-padding projection operator P , and coupled with the nor-
malization constraint into the constraint set

CPN = {x ∈ RN : (I − PPT )x = 0, ‖x‖2 = 1} , (6)

which allows to write the dictionary update in unconstrained form

min
{Dk}

1

2

S∑
s=1

∥∥∥ K∑
k=1

Dk ∗ xk,s − bs

∥∥∥2
2
+

R∑
r=1

ιCPN(Dk) , (7)

where ιCPN(·) is the indicator function of the constraint set CPN .
Several algorithms have been proposed to solve (7), most of which
are based on Augmented Lagrangian frameworks, differing pri-
marily on the approach they take to solve the `2 fidelity term
sub-problem. [13] proposed an Alternating Direction Method of
Multipliers (ADMM [14]) formulation, which [2] and [15] later im-
proved by efficiently approaching the aforementioned sub-problem
using Iterated Sherman Morrison and ADMM consensus solu-
tions, respectively. Modified ADMM consensus and Fast Iterative
Shrinkage-Thresholding Algorithm (FISTA) [16] based methods
have recently been shown to significantly outperform earlier alter-
natives [7].

There are also variants of these methods that perform the dic-
tionary update in an online fashion, such as [17, 18, 19], in order to
achieve scalability to very large training sets.

2.2. Separable from non-separable approximation

A straightforward approach to estimate Gr (as defined in Equation
(3)) from a given set of standard filters {Dk} was proposed in [5, 3],
involving placing a penalty on high-rank filters, namely

min
{Gr,αrk}

1

2

K∑
k=1

‖Dk −
R∑
r=1

αrk ·Gr‖2F + λ

R∑
r=1

‖Gr‖∗ , (8)

where ‖ · ‖∗ is the nuclear norm. [5, 3] highlighted that the choice
of λ is a challenging task, and that convergence was slow when es-
timating high-rank filters. They also proposed a second approach
based on the Canonical Polyadic Decomposition [20] that provides
faster performance

min
{αrk,xr,yr}

1

2

K∑
k=1

‖Dk −
R∑
r=1

αrk · xr ◦ yr‖2F , (9)

where xr and yr are rank-1 tensors and ◦ represents tensor outer
product. A reformulation of this problem as a special case of the
low-rank basis problem was proposed in [21], but the authors re-
ported that the tensor approach was significantly faster and attained
the same accuracy.

An auxiliary variable formulation of (8) given by

min
{Gr,αrk,Fr}

1

2

K∑
k=1

‖Dk −
R∑
r=1

αrmGr‖2F +
λ

2

R∑
r=1

‖Gr − Fr‖2F

s.t. rank(Fr) = 1 ∀r (10)

was proposed in [22] along with an efficient SVD-based generation
of the initial solution. The method was shown to be faster than the

tensor decomposition approach for small R (< 40) values while at-
taining comparable accuracy.

3. PROPOSED METHOD

Writing the dictionary update for (4) and coupling the norm con-
straint with the zero-padding restriction described in Section 2.1
gives the unconstrained problem

min
{hr,vr}

1

2

S∑
s=1

∥∥∥ R∑
r=1

vr ∗ hr ∗ xr,s − bs

∥∥∥2
2
+

R∑
r=1

(ιCPhN(hr) + ιCPvN(vr)) , (11)

where ιCPhN(·) and ιCPvN(·) are the indicator functions of the con-
straint sets CPhN and CPvN (analogous to (6)), with zero-padding op-
erators Ph (applied along the horizontal dimension) and Pv (applied
along the vertical dimension), respectively.

We approach the solution of (11) by alternating between updat-
ing the horizontal filters hr and the vertical ones vr . Considering
only the solution for the vertical filters vr (assuming fixed horizontal
filters), and reformulating the problem in ADMM-compatible form
in a fashion reminiscent of [2] leads to

min
{vr,gr}

1

2

S∑
s=1

∥∥∥ R∑
r=1

vr ∗ x′r,s − bs

∥∥∥2
2
+

R∑
r=1

ιCPvN(gr)

s.t. vr − gr = 0 ∀r , (12)

where x′r,s is the result of convolving the horizontal filters hr with
the feature maps xr,s. The associated subproblems are then given by

v(i+1)
r = argmin

vr

1

2

S∑
s=1

∥∥∥ R∑
r=1

vr ∗ x′r,s − bs

∥∥∥2
2

+
ρ

2

R∑
r=1

∥∥∥vr − g(i)r + f (i)
r

∥∥∥2
2

(13)

g(i+1)
r = argmin

gr

R∑
r=1

ιCPvN(gr) +
ρ

2

R∑
r=1

∥∥∥v(i+1)
r − gr + f (i)

r

∥∥∥2
2

(14)

f (i+1)
r = f (i)

r + v(i+1)
r − g(i+1)

r . (15)

Since (14) is of the form

argmin
x

1

2
‖x− y‖22 + ιCPvN(x) = proxιCPvN

(y) , (16)

its minimizer is given by
proxιCPvN

(y) = PvP
T
v y / ‖PvPTv y‖2 . (17)

For notational simplicity we rewrite (13) as

v(i+1)
r = argmin

vr

1

2

S∑
s=1

∥∥∥ R∑
r=1

vr ∗ x′r,s − bs

∥∥∥2
2

+
ρ

2

R∑
r=1

‖vr − zr‖22 , (18)

where zr = g
(i)
r − f (i)

r .
When performing standard CDL [2], the non-separable equiva-

lent of (18) is solved by switching to the Fourier domain and solving
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the associated linear system. In the separable case, however, it is
worth noting that since the filters {vr} are 1-D, whereas the co-
efficient maps {x′r,s} are 2-D, moving directly onto the frequency
domain would require the DFT solution (v̂r) to be a 2-D matrix com-
posed of replicating columns. This would mean including an addi-
tional constraint and further increasing the complexity of the prob-
lem. Instead we choose to rewrite the fidelity `2-norm term as a sum
over columns∥∥∥ R∑

r=1

vr ∗x′r,s−bs

∥∥∥2
2
=

I∑
i=1

∥∥∥ R∑
r=1

vr ∗x′r,s[i]−bs[i]
∥∥∥2
2
, (19)

where x′r,s[i] and bs[i] are the i-th columns of the corresponding
feature map and training image respectively. Replacing the equality
in (18) gives

argmin
vr

1

2

S∑
s=1

I∑
i=1

∥∥∥ R∑
r=1

vr∗x′r,s[i]−bs[i]
∥∥∥2
2
+
ρ

2

R∑
r=1

∥∥∥vr−zr∥∥∥2
2
.

Switching to the DFT domain, and defining X̂′r,s[i] = diag(x̂′r,s[i])
gives

argmin
vr

1

2

S∑
s=1

I∑
i=1

∥∥∥ R∑
r=1

X̂′r,s[i]v̂r − b̂s[i]
∥∥∥2
2
+
ρ

2

R∑
r=1

‖v̂r − ẑr‖22

Defining

X̂′s[i] = (X̂′0,s[i] X̂′1,s[i] ... ) v̂ =


v̂1
v̂2
...
v̂R

 ẑ =


ẑ1
ẑ2
...
ẑR

 (20)

the problem can be expressed as

argmin
vr

1

2

S∑
s=1

I∑
i=1

∥∥∥X̂′s[i]v̂ − b̂s[i]
∥∥∥2
2
+
ρ

2
‖v̂ − ẑ‖22 . (21)

Finally, to further simplify (21) we define

X̂′s =


X̂′s[1]

X̂′s[2]
...

X̂′s[I] .

 (22)

Substituting X̂′s and recovering the full vectorized DFT training im-
ages b̂s leads to the problem being expressed as

argmin
vr

1

2

S∑
s=1

∥∥∥X̂′sv̂ − b̂s

∥∥∥2
2
+
ρ

2
‖v̂ − ẑ‖22 , (23)

with solution(∑
s

X̂
′H
s X̂′s + ρI

)
v̂ =

∑
s

X̂
′H
s b̂s + ρẑ . (24)

Due to the commutativity property of the convolution operation, the
update for the horizontal filters hr can be easily derived by fixing
the vertical filters, defining x′r,s = vr ∗ xr,s, and following an
analogous chain of derivations as the one described in this section.

3.1. Implementation remarks

The linear system given by Eq. (24) is solved by applying Conjugate
Gradient (CG)2. Furthermore, in order to minimize the number of

2While another widely used method to deal with (24) is the Iterative Sher-
man Morrison (ISM) approach from [2], the column indexing we introduce
here entails an additional computational overhead that renders ISM imprac-

inner CG iterations, we use the solution for each previous update as
the initial value, as suggested in [7].

The full dictionary learning algorithm is implemented by com-
bining the proposed update method for {vr} and {hr} with the
ADMM-based sparse coding update proposed in [2]. Based on stan-
dard non-separable implementations, and the results provided by [6],
we interleave a single iteration of each update per outer loop, and
transfer the auxiliary variables of each ADMM framework across
the other update steps, which has been shown to provide the most
stable convergence ratio among the other possible choices [6].

4. RESULTS

In this section we assess the performance of the proposed separable
dictionary learning method in terms of reconstruction performance
for a CSC-based denoising problem, along with convergence and
computational runtime for the learning process.

4.1. Experimental framework

For the denoising comparisons, we used a set of 5 well-known im-
ages corrupted with AWGN (σ = 0.2), to perform CBPDN using
the following labeled set of filters of different sizes (see Table 1):
• Nat-sep: 36 Natively learned separable filters (our proposed

method)
• Apr-sep: 36 Separable filters approximated from 36 non-

separable ones via [22]
• Non-sep: 36 Standard non-separable filters learned via [2]

Since the CBPDN problem Eq. (1) has a tunable parameter λ, we
ensure a fair evaluation by solving for a grid of λ values and com-
paring only the optimal performance for each of the evaluated filter
sets. An example of the entire simulation results for a single image
is given in Figure 3.

For the separable dictionaries (nat-sep and apr-sep), we use the
`1 version of the FISTA-based CBPDN solver proposed in [23] that
exploits filter separability by computing the convolutions in the spa-
tial domain. For the non-separable dictionaries (non-sep), we use
the ADMM-based solver from [2], which is considered to be state-
of-the-art for this problem.

For the computational performance simulations, we evaluate the
learning time on the full CDL task for different training set sizes (S)
and filter set sizes (R = K) against a state-of-the-art ADMMM-
based non-separable CDL method [2]. These simulations were per-
formed on an Intel Xeon E5-2640 CPU (2,50 GHz , 128Gb RAM,
2x NVidia Tesla K40m GPU). Our Matlab code [24] can be used to
reproduce our experimental results.

4.2. Experiments

In Table 1 we illustrate the results of the denoising comparisons
between the 3 evaluated filter sets in terms of the SSIM metric
for different dictionary sizes, and report the average runtime for
each method across the grid of λ values. It can be observed that
the natively separable filters consistently outperform the approxi-
mated (separable) ones, and show equivalent performance to the
non-separable filters. The runtime results also show that performing
CSC with separable filters is almost two times faster than doing it
with non separable ones, which is consistent with the results re-
ported in [23]. We also show in Figure 3 the entire set of denoising
simulations across the λ grid for a single image.

tical for this task.
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(c) Time vs filter set size

Fig. 1: Computational performance (separable vs. non-separable) results for CDL simulations, with termination at 200 iterations.

Dict.
Size

barbara mandrill parrots boats goldhill Time

nat-sep
8x8 0.6175 0.5188 0.7188 0.6438 0.6709 40,77

12x12 0.6370 0.5248 0.7219 0.6532 0.6730 60,57
16x16 0.6285 0.5223 0.7197 0.6554 0.6728 70,11

non-sep
8x8 0.6189 0.5218 0.7207 0.6449 0.6732 70,3

12x12 0.6330 0.5300 0.7225 0.6507 0.6763 104,7
16x16 0.6283 0.5257 0.7218 0.6536 0.6741 112,6

apr-sep
8x8 0.6147 0.5015 0.7118 0.6335 0.6659 40,82

12x12 0.6122 0.5186 0.7132 0.6396 0.6640 60,64
16x16 0.6207 0.5157 0.7151 0.6502 0.6686 70,52

Table 1: Denoising performance (SSIM) for different filter sizes
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Fig. 2: Functional value behaviour comparison for CDL task

We report in Figure 1 (a) and (b) the computational performance
comparisons in the learning process for 2 different CG tolerance val-
ues, in terms of runtime (seconds) vs image training set size. We
consider a fixed number of 36 separable and non-separable filters
for this simulation, and measure the runtime for both training meth-
ods for a fixed number of iterations (200). As can be observed in
the graph, when the CG tolerance is 10−3 the proposed separable
method is slightly slower than its non-separable counterpart [2] for
small values of S, and outperforms it when S increases. When the
tolerance value is 10−5, the proposed method significantly outper-
forms [2] as S increases. Figure 1 (c) depicts a similar runtime
comparison where the training set size is fixed (S = 20) and the
dictionary size (number of filters) is varied (the tolerance value used

is 10−3). In tmakehis case it is also clear that the proposed method
is substantially faster than the non-separable method as the number
of filters increases. An example of the functional value behaviour

lambda

0.4 0.45 0.5 0.55 0.6 0.65 0.7 0.75 0.8

S
S

IM
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0.63

0.64

36 nat-sep

36 apr-sep

36 non-sep

Fig. 3: Denoising results on λ grid for ’barbara’ image, where apr-
sep, nat-sep and non-sep are the labels defined in Section 4.1

for a training set size of S = 20 is shown in Figure 2 for 200 it-
erations. It can be seen from the graph that the proposed separable
method converges to a slightly higher functional value than the non-
separable method. However, this difference does not seem to have a
significant impact on the performance quality of the learned separa-
ble filters, as can be seen on Table 1.

5. CONCLUSIONS

We have proposed an efficient method to learn separable dictionary
filters directly from an image training set, without the need to pre-
viously compute a set of non-separable filters. Our results show
that the separable filters learned through this method, when evalu-
ated through a CSC denoising task, consistently outperform approx-
imated separable filters, and attain the same reconstruction quality
as obtained from standard non-separable filters. Furthermore, the
proposed separable learning method is substantially faster than its
non-separable counterpart when either the training set or the number
of filters to estimate is large.
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