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ABSTRACT

This paper studies the low-rank matrix recovery problem from par-
tially lost and partially corrupted measurements. It shows both
analytically and numerically that the recovery performance can be
greatly enhanced if one further exploits the temporal correlations
among a sequence of low-rank matrices. The matrix recovery prob-
lem is formulated as a non-convex optimization problem, and the
recovery error is quantified analytically. A fast iterative algorithm
is proposed to solve the non-convex problem, and every sequence
generated by the algorithm converges to a critical point of the op-
timization problem. The method is numerically evaluated on the
synthetic datasets.

Index Terms— low-rank matrix, robust PCA, temporal correla-
tion, matrix completion.

1. INTRODUCTION

Many practical datasets have intrinsic low-dimensional structures
despite the high ambient dimension. Examples of low-dimensional
structures include sparse signals [5] and low-rank matrices [7]. A
signal is sparse if it only has a small fraction of nonzero entries. A
matrix M ∈ Rm×n is low-rank if its rank r � m,n. Motivated by
applications like image and video processing [8,21], remote sensing
[20] and collaborative filtering [1], the low-dimensional structures
have been extensively studied in recent years in problems like Low-
Rank Matrix Completion (LRMC) [9] and Robust Principal Compo-
nent Analysis (RPCA) [6].

LRMC aims to recover unobserved entries of a rank-r matrix
M from partial observations. Given M = L̄ + C̄, where L̄ is low-
rank matrix, and C̄ is a sparse matrix with at most s nonzero entries,
RPCA wants to separate L̄ and C̄ from M . In video processing,
L̄ represents slow-varying background, and C̄ models moving ob-
jects. In power system monitoring, L̄ models the spatial-temporal
blocks of ground-truth data, and C̄ models the erroneous measure-
ments [10]. Both problems can be formulated as non-convex op-
timization problems, due to the non-convex rank and sparsity con-
straints. Solving convex relaxations of these problems by replacing
the rank constraint with the nuclear norm [3, 7, 9] constraint and the
sparsity constraint with the `1-norm constraint [5] are proven to re-
turn the original matrix under certain conditions [6, 7]. Since it is
still time-consuming to solve large-scale convex problems, fast ap-
proximation methods for the original non-convex formulations have
attracted much attention recently. Despite the numerical superior-
ity, the theoretical analyses of non-convex methods are significantly
lagging. Only a few recent work such as [4, 14, 19] proved the con-
vergence of some non-convex approaches to the ground truth data if
the starting points of the algorithms are smartly chosen.

Most existing work assume that the low-dimensional structure
does not change over time and consider one fixed low-rank matrix.
However, users’ preference may change over time in collaborative
filtering [22]. The background of images and videos also change
over time. The temporal variation of the low-dimensional struc-
ture has not been much investigated. Parametric models like hidden
Markov models [16, 18] and autoregression models [13, 17] have
been applied to model the temporal correlations and demonstrated
encouraging numerical performance, but the theoretical study is very
limited. Moreover, the accuracy of the algorithms largely depends
on the correct estimation of the model parameters. RPCA with the
weak temporal correlations was studied in [23], and the theoretical
analysis only holds when the temporal correlations of the data points
are relatively weak. [22] proposes a model of a sequence of dynam-
ically correlated low-rank matrices through slow-varying subspaces.
It develops non-convex-optimization-based methods for both matrix
sensing and matrix completion, and further characterizes the perfor-
mance analytically as a function of correlations in the model. Each
matrix is low-rank, and the sparse errors are not considered in [22].

This paper studies the problems of recovering low-rank matrices
when the measurements are partially corrupted and partially lost. It
models the correlations of low-rank matrices through time-varying
subspaces. The model studied in this paper generalizes from the one
in [22] by additionally modeling sparse errors in the measurements.
To the best of our knowledge, this is the first analytical study of ro-
bust matrix recovery of temporally correlated matrices when the ma-
trices contain partial corruptions and erasures at the same time. We
formulate the matrix recovery problem as a non-convex optimiza-
tion problem and characterize the recovery error theoretically. Our
theoretical bound verifies the intuition that compared with recover-
ing each low-rank matrix individually, one can enhance the recovery
performance by further exploiting the temporal correlations in a se-
quence of low-rank matrices. We propose a fast iterative method to
solve the non-convex problem approximately and show that the al-
gorithm can converge to a critical point of the non-convex problem.

The rest of the paper is organized as follows. Section 2 intro-
duces our model and problem formulation. Section 3 provides the
analytical bound of the matrix recovery error. Section 4 proposes
an iterative algorithm and shows its convergence result. Section 5
records the numerical results. Section 6 concludes the paper.

2. PROBLEM FORMULATION AND MOTIVATION

Our problem formulation is built upon and generalizes the problem
setup in [22]. Let L̄t ∈ Rn1×n2 denote the actual data at time t,
and let C̄t ∈ Rn1×n2 denote the sparse additive errors in the mea-
surements at time t. The temporal correlations are modeled as a
sequence of low-rank matrices with correlated low-dimensional sub-
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spaces. Specifically, let X̄ ∈ Rn1×n2 denote the measurements at
time t,

X̄t = L̄t + C̄t = Ū t(V̄ t)T + C̄t, (1)

where L̄t has rank at most r, and C̄t has at most s nonzero entries.
Note that the low-rank constraint on L̄t is imposed by factorizing
L̄t as L̄t = Ū t(V̄ t)T , where Ū t ∈ Rn1×r , and V̄ t ∈ Rn2×r . We
further assume ‖L̄t‖∞ ≤ α and ‖C̄t‖∞ ≤ α for some constant α.
The temporal correlations can be modeled by correlations in Ū t’s
and V̄ t’s. Without loss of generality, we assume V̄ t changes over
time, while Ū t is fixed to be Ū such that we have L̄t = Ū(V̄ t)T . For
the sake of simplicity in our analysis, we consider a simple model on
V̄ t as follows.

V̄ t = V̄ t−1 + εt, t = 2, ..., d, (2)

where εt represents the perturbation noise in V̄ t. Note that (2) is
only used for analysis, while our proposed method does not need
the information of εt. Let Zt ∈ Rn1×n2 represent the measurement
noise. Ωt is the set of observed entries in X̄t with |Ωt| = mt. The
partial observed measurements can be presented by

Y t = PΩt(X̄t + Zt). (3)

To simplify our discussion, our goal is to recover the matrix at
the most recent time-step. The data recovery question is stated as
follows. Given partially observed and partially corrupted measure-
ments {Y t} for t = 1, .., d, can we recover the actual data L̄d?

Our problem formulation is motivated by background subtrac-
tion in video analysis. Each column of X̄t is a vectorized frame of a
sequence of n2 video frames. L̄t models the slow-changing common
background of the video, and C̄t models the foreground features or
bad measurements in the video.

We propose to estimate the unknown (L̄d, C̄d) using a non-
convex optimization approach. Note that the objective function is
given by

F (X) =
1

2

d∑
t=1

ωt‖PΩt(X)− Y t‖2F , (4)

where {ωt} for t = 1, ..., d are predetermined non-negative weights,
and

∑d
t=1 ωt = 1. We estimate (L̄d, C̄d) by (L̂, Ĉ), where

(L̂, Ĉ) = argmin(L,C)

1

2

d∑
t=1

ωt‖PΩt(L+ C)− Y t‖2F

s.t. ‖L‖∞ ≤ α, ‖C‖∞ ≤ α, rank(L) ≤ r,
∑
ij

1[Cij 6=0] ≤ s.
(5)

3. DYNAMIC MATRIX COMPLETION WITH
ERRONEOUS MEASUREMENTS

Although (5) is non-convex due to the non-convexity of the feasible
set, we first analyze the recovery accuracy of the global minimizer
of (5). we will propose an algorithm to solve (5) approximately in
Section 4.

Our theoretical bound is built upon and generalizes the result in
[22]. We first define some coefficients which appear in the bound.
Define

nmax = max(n1, n2), (6)

and
nmin = min(n1, n2). (7)

Definition 3.1. A rank-r matrix X ∈ Rn1×n2 with SVD X =
UΣV T is incoherent with parameter µ if

‖U:i‖2 ≤ µ
√

r

n1
for any i = 1, ..., n1 (8)

and

‖V:j‖2 ≤ µ
√

r

n2
for any j = 1, ..., n2, (9)

i.e., the subspaces spanned by the columns of U and V are both µ-
incoherent.

Note that U ∈ Rn1×n1 and V ∈ Rn2×n2 in Definition 3.1
are different from Ū t ∈ Rn1×r and V̄ t ∈ Rn2×r in (1). U and
V here are orthogonal matrices, however there is no orthogonality
requirement on Ū t and V̄ t.

We also assume the operator PΩt is a uniform sampling ensem-
ble with replacement, which means all sensing matrices in the oper-
ator are i.i.d. uniformly distributed on the set

X = {ej(n1)eTk (n2), 1 ≤ j ≤ n1, 1 ≤ k ≤ n2}, (10)

where ej(n) are the canonical basis vectors in Rn. For the simplic-
ity of analysis, we assume |Ωt|’s are the same for t = 1, ..., d and
set m0 = |Ωt|, ∀t. Note that the locations of observations in Ωt’s
are different. Let p = m0/(n1n2) denote the fraction of sampled
entries.

Suppose that we are given measurements as in (3) where all
PΩt ’s are uniform sampling ensembles. Assume that L̄t evolves ac-
cording to (2), has rank at most r, and is incoherent with parameter
µ0, C̄t has at most s nonzero entries. ‖L̄t‖∞ ≤ α and ‖C̄t‖∞ ≤ α.
Further assume that the measurement noise Zt is i.i.d. N (0, σ2

1) for
1 ≤ t ≤ d and that the perturbation noise εt is i.i.d. N (0, σ2

2) for
2 ≤ t ≤ d. The recovery guarantee is as follows.

Theorem 1. If m0 ≥

c1n1n2 log(n1 + n2)(
√

2 log(d(n1 + n2)n1n2)σ2
max + 2α)2

5nmax

∑d
t=1 ω

2
t (σ2

1 + (d− t)σ2
2) + 2α2(

√
2nmax + 4s

nmin
)
,

(11)
then the estimator (L̂, Ĉ) from (5) satisfies

1

n1n2
‖L̂+ Ĉ − L̄d − C̄d‖2F ≤ max(B1, B2), (12)

with probability at least 1− 11
n1+n2

− 7dnmax exp(−nmin), where

σ2
max = max

t
ω2
t (
µ2

0r

n1
σ2

2(d− t) + σ2
1), (13)

B1 = 16α2 max(

√
c2

log(n1 + n2)

m0 log(6/5)
,

log(n1 + n2)

2n1 log(6/5)
), (14)

B2 =
256α2

m0
(176ec23rnmax log(n1 + n2)

d∑
t=1

ω2
t +

3456

5
n1

+8c3
√
rs

√
2e log(n1 + n2)

∑d
t=1 ω

2
tm0

nmin
) +

16α
√

2sκr

m0

+
32r

m0
log(n1 + n2)κ+

32α2

n1n2
+

32α

m0

√
κs log(n1 + n2),

(15)
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κ = 256nmax

d∑
t=1

ω2
t (σ2

1 + (d− t)σ2
2) + 16α2p2s

+192α2(

√
2

2
nmax +

2s

nmin
),

(16)

and c1, c2 and c3 are constants.

The proof of Theorem 1 is skipped due to the page limit. Please
refer to [11] for the proofs. Assume n1 and n2 are in the same
order O(n). When the measurements do not contain corruptions,
i.e., C̄t = 0 for t = 1, ..., d, Ref. [22] showed that if m0 ≥
O(n(log(n))2), it holds that

‖L̂− Ld‖2F
n1n2

≤ max(O(

√
logn

m0
), O(

n logn

m0
)), (17)

when the feasible set is imposed by rank constraint. One can check
that our theoretical result reduces to a result comparable to (17) when
we set s = 0 in Theorem 1.

Theorem 1 establishes the recovery error when the measure-
ments are partially corrupted and partially observed. If s = O(n),
i.e., the number of corrupted measurements per row is bounded, we
then have if m0 ≥ O(n(log(n))2),

‖L̂+ Ĉ − Ld − Cd‖2F
n1n2

≤ max(B1, B2), (18)

where

B1 = max(O(

√
logn

m0
), O(

logn

n
)), (19)

and

B2 = O(
n logn

m0
). (20)

Note that (18) diminishes to zero when n increases, and (18) is in
the same order as the result in [22], where C̄t’s are all zeros. If we
choose the weight ωt = 1

d
for t = 1, ..., d, one can check that the

right hand side of (11) is in the order of O( log d
d

), which implies
that the required number of observations of each matrix is reduced
when d increases, by a factor of O( log d

d
). One can also check that

two terms in B2 decrease with the increasing of d, which means the
recover error reduces by exploiting the temporal dynamic in the low
rank matrices.

4. ALGORITHM FOR DYNAMIC MATRIX COMPLETION
WITH ERRONEOUS MEASUREMENTS

We have discussed the theoretical guarantee of dynamic robust ma-
trix completion in Section 3. We here propose an algorithm to solve
the non-convex optimization problem (5) approximately. We use the
matrix factorization technique, where the low-rank matrix L is fac-
torized into two matrices U ∈ Rn1×r and V ∈ Rn2×r such that
L = UV T . In each iteration, we apply alternating gradient descent
to update the estimations of U , V and C. We use the hard threshold-
ing technique to refine the matrix C by only keeping s entries with
the largest absolute values. Define

P1
α(

[
U
V

]
) =


√

α
‖UV T ‖∞

[
U

V

]
, if ‖UV T ‖∞ > α,[

U

V

]
, if ‖UV T ‖∞ ≤ α,

(21)

and

P2
α(C) =

{
α

‖C‖∞C, if ‖C‖∞ > α,

C, if ‖C‖∞ ≤ α.
(22)

Note that P1
α(·) and P2

α(·) are introduced for the infinity norm con-
straints on L and C. The details of our algorithm is summarized in
Algorithm 1. Note that the step size τ in Algorithm 1 is selected via
a backtracking line search using Armijo’s rule as follows. We fix a
parameter β ∈ (0, 1) and start with τ = 1. We update τ by βτ until
it holds that

F (X − τ∇F (X)) ≤ F (X)− τ

2
‖∇F (X)‖22. (23)

Algorithm 1 Algorithm for dynamic matrix completion

Input: Partially observed matrix Y t ∈ Rn1×n2 for t = 1, ..., d,
initialization matrices U0 ∈ Rn1×r , V0 ∈ Rn2×r and zero ma-
trix C0 ∈ Rn1×n2 , parameters r, α, β, and s, weights ωt for
t = 1, ..., d.

1 for i = 0, 1, 2, ..., until convergence do
2 Ui+1 = Ui− τ∇UF (UiVi

T +Ci), where τ is selected via a
backtracking line search using Armijo’s rule with parameter
β.

3 Vi+1 = Vi−τ∇V F (Ui+1Vi
T +Ci), where τ is selected via

a backtracking line search using Armijo’s rule with parameter
β.

4

[
Ui+1

Vi+1

]
= P1

α(

[
Ui+1

Vi+1

]
).

5 Ci+1 = Ci− τ∇CF (Ui+1Vi+1
T +Ci), where τ is selected

via a backtracking line search using Armijo’s rule with pa-
rameter β.

6 Ci+1 = P2
α(Ci+1).

7 if
∑
i′j′ 1[Ci+1i′j′ 6=0] > s then

8 Ci+1 only keeps s entries with the largest absolute values.
Other nonzero entries are set to be zero.

9 end if
10 end for
11 Return: L̂ = Û V̂ T and Ĉ.

We next discuss the convergence analysis of Algorithm 1. Us-
ing the idea similar to that in [12], we will show that if we drop the
constant constraint α on the infinity norms of the matrices L and
C in both the problem formulation (5) and the algorithm (lines 4
and 6 of Algorithm 1), every sequence generated by the resulting
simplified algorithm will converge to a critical point of the simpli-
fied non-convex optimization problem. Dropping the α constraint
simplifies the algorithm and is practical for the cases when α is un-
known. Lines 2, 3 and 5 of Algorithm 1 can be equivalently written
in the form of proximal regularization as follows.

Ui+1 ∈ prox(Ui − τ∇UF (UiV
T
i + Ci)), (24)

Vi+1 ∈ prox(Vi − τ∇V F (Ui+1V
T
i + Ci)), (25)

Ci+1 ∈ prox(Ci − τ∇CF (Ui+1V
T
i+1 + Ci)). (26)

The proximal map is defined as:

prox(Bi − τ∇BF (Bi)) :=

arg min
B
{〈B −Bi,∇BF (Bi)〉+

1

2τ
‖B −Bi‖2F +K(C)},

(27)
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where

K(C) =

{
0, if

∑
ij 1[Cij 6=0] ≤ s,

+∞, if
∑
ij 1[Cij 6=0] > s.

(28)

K(C) in (27) can be achieved by keeping s entries with the largest
absolute values and setting others to be zero, which corresponds to
lines 7-8 of Algorithm 1.

Our algorithm is a special case of Proximal Alternating Lin-
earized Minimization (PALM) algorithms. The convergence of
PALM algorithms have been proved in [2]. Based on Proposition
3 in [2], if we can show that ∇F (X) is Lipschitz continuous, and
F (UV T + C) + K(C) satisfies the Kurdyka-Lojasiewicz (KL)
property, then our algorithm converges to a critical point of (5) from
every initial point. The proofs of Lipschitz continuity of ∇F (X)
and the KL property of F (UV T + C) + K(C) are skipped due to
the page limit. Please refer to [11] for the proofs. In practice, if α is
known, we observe that the numerical performance can be improved
by imposing the constraint on the infinity norm, although we cannot
extend the convergence analysis to this case yet.

5. SIMULATION

We test the performance of Algorithm 1 on synthetic dataset in this
section. The recovery performance is measured by the relative re-
covery error ‖L̂− L̄‖F /‖L̄‖F , where matrix L̄ represents the actual
data, and L̂ represents the recovered data. The corruption rate de-
notes the fraction of nonzero entries in C̄. The average erasure rate
is the percentage of missing entries.

We compare our method with one convex method [15] for ro-
bust matrix completion (RMC), which solves the following convex
problem

min
L,C

1

|Ωd| ‖PΩd(L+ C)− Y d‖22 + λ1‖L‖∗ + λ2‖C‖1

s.t. ‖L‖∞ ≤ α and ‖C‖∞ ≤ α.
(29)

We set λ1 and λ2 to be 0.001 and 0.00015 respectively in the con-
vex RMC method. The weights {ωt} in our method are set to be
( 1
d
, ..., 1

d
). All results are averaged over 100 runs.

We set n1 = 50, n2 = 50, r = 5 and construct L̄t ∈ Rn1×n2

as L̄t = Ū(V̄ t)T where Ū ∈ Rn1×r and V̄ t ∈ Rn2×r . Ū and
V̄ 1 are matrices with i.i.d. entries drawn from standard Gaussian
distribution. For all t ≥ 2, let V̄ t = V̄ t−1 + εt, where matrix εt

is drawn from Gaussian distribution N (0, σ2
2). Noise matrix Zt is

drawn from Gaussian distribution N (0, σ2
1). We first set s = 500,

σ1 = 0.01, and σ2 = 0.03. Fig. 1 shows the recovery performance
of the convex RMC method and our method with different d. We
can see that our method performs generally better than the convex
RMC method, and the performance of our method improves when d
increases.

We then set d = 3 and keep the other simulation setup the
same. Fig. 2 shows the recovery performance of the convex RMC
method and our method according to different corruption rate. We
can see that our method performs generally better than the convex
RMC method, and the performance of our method improves when
the corruption rate decreases.

6. CONCLUSION AND DISCUSSIONS

This paper develops a data recovery method from partially observed
and partially corrupted measurements with time-varying low dimen-
sional structure. This work extends the existing research of robust
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Fig. 1. Relative recovery error of the convex RMC method and our
method according to different d.
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Fig. 2. Relative recovery error of the convex RMC method and our
method according to different corruption rate (d = 3 in our method).

principle component analysis to the recovery of a sequence of time-
varying low-dimensional structures when part of the measurements
are corrupted. Exploiting the temporal correlations in the low di-
mensional structures, we show that the recovery error of our pro-
posed method diminishes as the problem size increases, and the er-
ror decays in the same order as that of the state-of-the-art data recov-
ery method with uncorrupted measurements. A proximal algorithm
with convergence guarantee is developed and numerically evaluated
on synthetic dataset. One future work is to test our method on the
practical datasets in applications such as background subtraction in
video processing. We will also study the convergence of the algo-
rithm when the infinity norm constraint is considered.
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