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ABSTRACT

In this work we propose to fit a sparse logistic regression model by
a weakly convex regularized nonconvex optimization problem. The
idea is based on the finding that a weakly convex function as an ap-
proximation of the `0 pseudo norm is able to better induce sparsity
than the commonly used `1 norm. For a class of weakly convex
sparsity inducing functions, despite the nonconvexity, the algorithm
proposed to solve the problem is based on proximal gradient de-
scent, which allows the use of convergence acceleration techniques
and stochastic gradient. Then the general framework is applied to a
specific weakly convex function, and the solution method is instanti-
ated as an iterative firm-shrinkage algorithm, of which the effective-
ness is demonstrated in numerical experiments.

Index Terms— Sparse logistic regression, weakly convex regu-
larization, nonconvex optimization, proximal gradient descent

1. INTRODUCTION

1.1. Background

Logistic regression is a widely used supervised machine learning
method for classification. It learns a neutral hyperplane in the fea-
ture space according to a probabilistic model, and classifies test data
correspondingly. The output does not only give a class label, but
also a natural probabilistic interpretation. It can be straightforwardly
extended from two-class to multi-class problems, and has been ap-
plied to text classification [2], gene selection and microarray analy-
sis [3, 4], combinatorial chemistry [5], image analysis [6, 7], etc.

In a classification problem training data {(x(i), y(i)), i =

1, . . . , N} are given, where every point x(i) ∈ Rd is a feature
vector, and y(i) is its corresponding class label. In a two-class lo-
gistic regression problem, y(i) ∈ {0, 1}, and it is assumed that the
probability distribution of a class label y given a feature vector x is
as the following

p(y = 1|x;θ) = σ(θTx) =
1

1 + exp(−θTx)

p(y = 0|x;θ) = 1− σ(θTx), (1)

where θ ∈ Rd is the model parameter to be learned, σ(·) is the
sigmoid function. When xTθ = 0, the probability of having either
label is 0.5, so θ is a normal vector of a neutral hyperplane.

In sparse logistic regression, the model parameter θ is assumed
to be sparse, i.e., the dimension d can be large, and θ is assumed to

This work was partially supported by National Natural Science Foun-
dation of China (NSFC 61531166005, 61571263), the National Key Re-
search and Development Program of China (Project No. 2016YFE0201900,
2017YFC0403600), and Tsinghua University Initiative Scientific Research
Program (Grant 2014Z01005). The corresponding author of this work is Y.
Gu (E-mail: gyt@tsinghua.edu.cn). An extended manuscript of this work is
available at [1].

have only a few non-zero elements. An element θj = 0 means that
the jth feature does not have influence on the classification result,
so sparse logistic regression tries to find a few features that are rele-
vant to the classification results from a large number of features. It
is also a way of alleviating over-fitting and enhancing classification
accuracy on test data.

As a convex function that induces sparsity, `1 norm has been
widely used as the regularization in sparse logistic regression, and
the optimization problem is as the following

minimize l(θ) + β‖θ‖1, (2)

where θ is the variable, β > 0 is a parameter balancing the sparsity
and the error on the training data, and l is the logistic loss

l(θ) =

N∑
i=1

− log p(y(i)|x(i);θ). (3)

Problem (2) is convex but nondifferentiable, and several specialized
solution methods have been proposed [2, 8–12]. Once we obtain a
solution θ̂, given a new feature vector x, we can predict the probabil-
ity of the two labels by (1) and take the one with higher probability.

1.2. Contribution

In this work we propose to use a weakly convex function as the reg-
ularization in sparse logistic regression. The idea is inspired by the
relation between logistic regression and one-bit compressed sens-
ing [13] and results indicating that weakly convex functions are able
to better induce sparsity than the `1 norm [14–16]. We formulate the
problem as a weakly convex sparsity inducing function regularized
nonconvex program, and a solution method based on proximal gradi-
ent descent is devised, where the usage of Nesterov acceleration and
stochastic gradient is also considered. Then we apply the framework
to a specific weakly convex regularizer, and the effectiveness of the
model and the method is verified in numerical experiments.

1.3. Related Works

Despite that in general nonconvex optimization is hard to solve, non-
convex regularization has been extensively studied to induce sparsity
in machine learning for feature selection and other sparsity related
topics such as compressed sensing.

The work [17] studies properties of local optima of a class of
nonconvex regularized M-estimators including logistic regression
and the convergence behavior of a proposed composite gradient
descent solution method. The nonconvex regularizers considered in
their work overlap with the ones in this work, but they have a convex
constraint in addition.

Difference of convex (DC) functions are used as an approxima-
tion of the `0 pseudo norm for feature selection in logistic regres-
sion and support vector machines (SVMs) in [18–20]. Their solution
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methods are based on the difference of convex functions algorithm
(DCA), where each iteration involves solving a convex program. In
this work, our regularizer also belongs to the class of DC functions,
but we study a more specific class, i.e., the weakly convex functions,
and there is no need to numerically solve a convex program in ev-
ery iteration given that the proximal operator of the weakly convex
function admits an easy computation.

From the perspective of reconstructing θ, one-bit compressed
sensing [21] studies a similar problem, where a sparse vector θ (or
its normalization θ/‖θ‖2) is to be estimated from several one-bit
measurements y(i) = 1(θTx(i) ≥ 0), where 1(·) takes the value 1
when the condition holds and 0 if not, and compressed sensing [22]
studies the recovery of a sparse θ from several linear measurements
y(i) = θTx(i). Nonconvex regularizations have been used to pro-
mote sparsity in both compressed sensing [15,16,23,24] and one-bit
compressed sensing [25]. These studies have shown that, despite that
nonconvex optimization problems are hard to solve globally, with
some proper choices of the nonconvex regularizers, using some lo-
cal methods their recovery performances can be better than that of
the `1 regularization, both theoretically and numerically, in terms of
required number of measurements and robustness against noise.

2. PRELIMINARIES

A class of weakly convex functions has been proposed to induce
sparsity [15]. The definition is as the following.

Definition 1. [15] The weakly convex sparsity inducing function J
is defined to be separable J(x) =

∑n
i=1 F (|xi|),where the function

F : R→ R+ satisfies the following.
• Function F is even and not identically zero, and F (0) = 0;
• Function F is non-decreasing on [0,∞);
• Function t 7→ F (t)/t is nonincreasing on (0,∞);
• Function F is weakly convex [26] on [0,∞) with nonconvex-

ity parameter ζ > 0, i.e., ζ is the smallest positive scalar
such that the function F (t) + ζt2 is convex.

According to the definition J is weakly convex, and J(x) +
ζ‖x‖22 is a convex function, so J belongs to the class of DC func-
tions [18]. Since ζ > 0, the function J is nonconvex, and it can be
nondifferentiable, which indicates that an optimization problem with
J in the objective function can be hard to solve.

The proximal operator of function J with parameter β is defined
as

proxβJ(v) = argminβJ(x) +
1

2
‖x− v‖22, (4)

where the minimization is with respect to x. If β is small enough so
that βζ < 1

2
, then the objective function in (4) is strongly convex,

and the minimizer is unique. For some weakly convex functions,
their proximal operators allow easy computation. For instance, the
following F known as minimax concave penalty (MCP) proposed
in [27] satisfies Definition 1

F (t) =

{
|t| − ζt2 |t| ≤ 1

2ζ
1
4ζ

|t| > 1
2ζ

. (5)

Its proximal operator with βζ < 1/2 can be explicitly written as

proxβF (v) =


0 |v| < β
v−βsign(v)

1−2βζ
β ≤ |v| ≤ 1

2ζ

v |v| > 1
2ζ

, (6)

and is also known as the firm shrinkage operator [28].

3. SPARSE LOGISTIC REGRESSION WITH WEAKLY
CONVEX REGULARIZATION

We propose to use the following problem, in which function J be-
longs to the class of weakly convex sparsity inducing functions in
Definition 1, to learn the parameter θ in sparse logistic regression

minimize l(θ) + βJ(θ), (7)

where the variable is θ ∈ Rd, β > 0 is a regularization parameter,
and l is the logistic loss (3). Note that when the nonconvexity param-
eter ζ = 0, the problem becomes convex and the standard `1 logistic
regression is an instance of it. When ζ > 0, it is not straight forward
to see if problem (7) is convex for any training data and any choice
of β and the nonconvexity parameter ζ. In the extended version of
this work [1], we proved that when the data matrix

X =
(
x(1), . . . ,x(N)

)
does not have full row rank, then problem (7) is nonconvex for any
ζ and β.

As for the solving method, since the logistic loss l is differen-
tiable and the proximal operator of function J can be well defined,
we use the proximal gradient descent method, and the iterative up-
date is as the following

θk+1 = proxαkβJ
(θk − αk∇l(θk)), (8)

where αk > 0 is a stepsize, and the gradient is calculated as follows

∇l(θk) =
N∑
i=1

(
σ
(
θT
k x

(i)
)
− y(i)

)
x(i). (9)

Note that the update (8) of the algorithm is equivalent to solving the
following problem

minimize αkβJ(θ) +
1

2
‖θ − θk + αk∇l(θk)‖22 ,

which is strongly convex for αkβζ < 1/2 and separable across the
d coordinates.

We have proved in the extended version [1] that if the stepsize
αk satisfies one of the following

• constant stepsize αk = α and

1

α
> max

(
2βζ,

1

8
‖X‖2 + βζ

)
; (10)

• backtracking stepsize αk = ηnkαk−1, where βζα0 < 1/2,
0 < η < 1, and nk is the smallest nonnegative integer for the
following to hold

l(θk)≤ l(θk−1)+〈θk−θk−1,∇l(θk−1)〉+
‖θk−1−θk‖22

2αk
;

then the sequence {θk} generated by the algorithm satisfies that the
objective function is non-increasing and convergent, and that ‖θk −
θk−1‖2 → 0, so we can have the following stopping criterion

|l(θk+1) + βJ(θk+1)− l(θk)− βJ(θk)| ≤ εtol. (11)

The algorithm can be summarized in Table 1.
Though algorithm 1 is convergent, proximal gradient methods

have been known to suffer from slow convergence, and the Nesterov
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Table 1. Proximal gradient descent for weakly convex regularized
logistic regression.

Input: initial point θ0, α0 < 1/(2βζ) (or α satisfying (10)),
εtol > 0.
k = 0;
Repeat:

update θk+1 by (8) using constant or backtracking stepsize;
k = k + 1;

Until stopping criterion (11) is satisfied.

Table 2. Accelerated proximal gradient descent for weakly convex
regularized logistic regression.

Input: initial point θ̂0, α0 < 1/(2βζ) (or α satisfying (10)).
k = 1, t1 = 1, θ1 = θ̂0;
Repeat:

update θ̂k = proxαkβJ
(θk − αk∇l(θk))

by constant or backtracking stepsize;

update tk+1 =
1+
√

1+4t2
k

2
;

update θk+1 = θ̂k +
(
tk−1
tk+1

)
(θ̂k − θ̂k−1);

k = k + 1;
Until maximum number of iterations is reached.

acceleration [29] has been used in proximal gradient based algo-
rithms such as ISTA [30]. Such technique is also applicable in our
case, so we have the accelerated algorithm summarized in Table 2.

Another variation in implementation is that the batch gradient
∇l(θk) used in every iteration can be replaced with a stochastic gra-
dient

∇l̃(θk) = N
(
σ
(
θT
k x

(i)
)
− y(i)

)
x(i), (12)

where x(i) is randomly chosen among all training samples. We say
that (12) is one gradient calculation, which only uses one data point,
and correspondingly the batch gradient (9) which uses all training
samples needs N gradient calculations. Diminishing stepsize is re-
quired due to the gradient noise caused by the randomness, and a
common choice of the stepsize is as follows [31]

αk = α0/(1 + kγα0),

where γ and α0 are constant parameters. Stochastic gradient is
widely used in learning [31, 32], in that with only one data sample
and one gradient calculation per iteration, methods using stochastic
gradient can reach a lower error rate with fewer gradient calculations
compared with methods using batch gradient.

3.1. A Specific Case: Iterative Firm-shrinkage Method

In this section, we take the weakly convex function J to be the spe-
cific one defined by F in (5), in that its proximal operator has a
closed form expression (6) that only needs parallel scalar multipli-
cations to compute.

When the function J is defined by F in (5), the proximal gra-
dient method in Table 1 is instantiated and can be understood as
a generalization of the iterative shrinkage-thresholding algorithm
(ISTA) used to solve `1 regularized least square problems [30, 33].
As the concrete proximal operator defined in (6) has been named
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Fig. 1. An example without acceleration. Upper: objective value
during iterations. Lower: estimated θ/‖θ‖2 and the ground truth.

as the firm-shrinkage operator, we call the method an iterative firm-
shrinkage algorithm (IFSA). According to the theorems proved
in the extended paper [1], for IFSA, if a constant or backtracking
stepsize is used, then we know that the objective function is non-
increasing and convergent, that the update ‖θk − θk−1‖2 goes to 0,
and that any limit point of {θk} (if there is any) is a critical point of
the objective function.

4. NUMERICAL EXPERIMENTS

In this section, we demonstrate numerical results of the weakly con-
vex regularized sparse logistic regression (7) with function J specif-
ically defined by F in (5). The solving method IFSA is implemented
and tested both with and without acceleration. As a comparison, we
also show results of the `1 logistic regression (2), for which there are
many algorithms, and we simply use a generic solver SCS interfaced
by CVXPY [34], in that in such comparison we focus on replacing
the `1 norm with a weakly convex function.

4.1. One Example for Convergence Demonstration

To begin with, for one example we show the convergence curves
and the estimated θ/‖θ‖2 of our algorithm with different constant
stepsizes. The dimensions are d = 50, N = 1000, and K = 8. The
data matrix is generated by X = AB/‖AB‖, where A ∈ R50×45

and B ∈ R45×1000 are Gaussian matrices, so that the data points
are in a latent 45-dimensional subspace. The positions of the non-
zeros of the ground truth θ0 are uniformly randomly generated, and
the amplitudes are uniformly distributed over [5, 15]. The label y
is generated according to 1(θT

0 x ≥ 0), so that the data points are
linearly separable. We set the regularization parameter β = 1.2 and
the nonconvexity parameter ζ = 0.1.

The results without and with the Nesterov acceleration are
shown in Fig. 1 and Fig. 2, respectively. Fig. 1 shows that, with
larger stepsize (within the range), the objective function decreases
faster, and when terminated at the given number of iterations the
estimated θ/‖θ‖2 becomes closer to the ground truth. Fig. 2 shows
that with the acceleration the objective function decreases faster for
all the tested stepsizes, and that the estimations of θ/‖θ‖2 are better
than the estimation obtained from the `1 logistic regression.

4.2. Varying Nonconvexity and Regularization Parameters

In the second experiment, we demonstrate the performance under
various choices of the parameters ζ and β. The dimensions are
d = 50, K = 5, and N = 200. The training data X is randomly
generated from i.i.d. normal distribution, and the ground truth θ0
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Fig. 2. An example with acceleration. Upper: objective value during
iterations. Lower: estimated θ/‖θ‖2 and the ground truth.
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is generated by uniformly randomly choosing K nonzero elements
with i.i.d. normal distribution. The stepsize of IFSA is chosen as 0.1.
The labels are generated so that the data points are linearly separable.
The results are in Fig. 3, where the horizontal axis is the logarithm
of ζ, the vertical axis is the logarithm of β, and the gray scale rep-
resents the logarithm of the test error averaged from 10 independent
experiments, each of which is tested by 1000 random test samples
generated in the same way as the training data.

The results show that with a fixed value of β no less than 10−2.8,
as the value of ζ increases from 0, the test error first decreases and
then increases, and there is always a choice of ζ > 0 under which
the test error is smaller than the test error with ζ = 0. The results in
Fig. 3 verify our motivation that weakly convex regularized logistic
regression can better estimate the sparse model than the `1 logistic
regression and enhance test accuracy.

4.3. Non-separable Noisy Dataset

In this part we will show test errors when the training data points are
not linearly separable. To be specific, the label y of a training data x
is generated by y = 1(xTθ + n ≥ 0), where n is an additive noise
generated from the Gaussian distributionN (0, ε2). The training data
matrix X, the ground truth model vector θ0, and the test data points
are randomly generated in the same way as the second experiment.

In the training process, under every noise level ε, we learned θ
under various β from 10−3 to 10 and ζ from 0 to 10, and we repeat it
10 times with different random data to take the averaged test errors
for every pair of ζ and β. For every noise level, we then took the
lowest error rate obtained with ζ = 0 as the error rate of `1 logistic
regression and the lowest error rate obtained with ζ > 0 as the error
rate of weakly convex logistic regression. The results are in Table 3.
From the results we can see that, under every tested noise level the

Table 3. Test error for non-separable data.

noise level `1 logistic regression weakly convex logistic regression
0.01 3.31% 0.92%
0.03 3.27% 1.48%
0.05 3.91% 1.85%
0.07 4.90% 3.39%
0.3 13.70% 12.37%
0.5 21.47% 19.70%

0 2 4 6 8 10
#grad / N

100

200

300

400

500

600

700

o
b
je

ct
iv

e
 v

a
lu

e

batch gradient

stochastic gradient

0 2 4 6 8 10
#grad / N

0.0

0.1

0.2

0.3

0.4

0.5

te
st

 e
rr

o
r

Fig. 4. An example with stochastic gradient.

weakly convex logistic regression can achieve lower error rate than
the `1 logistic regression.

4.4. Stochastic Gradient versus Batch Gradient

Before concluding this work, we show a numerical example in which
stochastic gradient is used in the accelerated IFSA. The data gener-
ation is the same as section 4.1, and we set β = 1.2 and ζ = 0.1.
For batch gradient we run 10 iterations with α = 15 for fast con-
vergence, and for stochastic gradient we run 10N iterations with
α0 = 0.0005. The objective value and the test error rate are calcu-
lated every N iterations for stochastic gradient and every iteration
for the full gradient, and the curves are in Fig. 4. Please notice that
the horizontal axis is proportional to the number of gradient calcula-
tions, which is 1 for stochastic gradient and N for full gradient per
iteration. The result in Fig. 4 shows that using stochastic gradient
in the accelerated IFSA is able to achieve lower objective value and
error rate, when the number of gradient calculations is limited.

5. CONCLUSION AND FUTURE WORK

In this work we study weakly convex regularized sparse logistic re-
gression. For a class of weakly convex sparsity inducing functions,
even though the problem is nonconvex, a solution method based on
the proximal gradient descent is devised with possible usage of Nes-
terov acceleration and stochastic gradient. Then the general frame-
work is applied to a specific weakly convex function, and the solu-
tion method for this specific case named as iterative firm-shrinkage
algorithm is implemented. Its effectiveness is demonstrated in nu-
merical experiments. There can be future works on the theoretical
analysis of stochastic proximal gradient descent for this weakly con-
vex regularized nonconvex program. More generally, weakly convex
regularization could be used in other machine learning problems to
fit sparse models.
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