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ABSTRACT

This paper studies the problem of localizing a source based on

different types of signals measured at different sensing loca-

tions, where propagation models of the signals are not known.

A tensor observation model is proposed to arrange such mul-

timodal data into different layers to form a 3D data array. It is

proven that the vectors extracted from the least squares rank-1

approximation of the tensor under the Tucker’s model are lo-

cation signature vectors of the source, where the vectors are

unimodal and their peak locations correspond to the source lo-

cation. Numerical experiments demonstrate that the proposed

localization method based on tensor decomposition outper-

forms the baseline that heuristically averages the estimates

individually from different types of data.

Index Terms— Source localization, tensor decomposi-

tion, matrix completion, nonparametric estimation, data fu-

sion

1. INTRODUCTION

With the trending concept of internet-of-things (IoT),

there has been a rapid development of sensor networks for

various applications in industrial and civil domains. A typical

IoT network may consist of different types of sensors to de-

tect different signals, such as electromagnetic waves, acoustic

signals, temperature, and ambient light. We are interested in

exploiting such multimodal data to localize a source.

Source localization is challenging in many application

scenarios due to harsh propagation environment or lack of

infrastructure. Source localization infrastructure typically re-

quires precise time synchronization for time-of-arrival (TOA)

based ranging, propagation parameter estimation for received

signal strength (RSS) based ranging, or exhaustive channel

measurements for fingerprint based localization. Such re-

quirements may not be fulfilled by a low-cost IoT network

that is formed by sensors powered by batteries or energy har-

vesting. However, even though the primary goal of the sensor
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network is not for localization, the multimodal sensing data,

given a large amount of it, can still be exploited to localize a

source.

This paper studies source localization problems when the

signal propagation models are not known, and thus, ranging

information is not available. In particular, we focus on the

problem of combining data from different types of sensors

(for example, from RSS measurements and TOA measure-

ments). Note that this is challenging when parametric models

are not available as in our case, and thus, Bayesian frame-

work cannot apply. In prior works [1,2] for the case of single

mode data (RSS measurements), a sparse matrix observation

model was proposed and it was shown that by extracting a

pair of dominant singular vectors from the RSS matrix, the

x and y coordinates of the source can be estimated from lo-

calizing the peaks of the two vectors, respectively. However,

such a strategy cannot be directly extended to the case of mul-

timodal data. For example, a simple addition of a RSS matrix

and a TOA matrix will not work, since the matrices may have

different eigenstructure and the sum of them is not necessarily

low rank (a required property in [1–3]).

Our Contributions: In this paper, we propose to form a

tensor observation model and extract a pair of signature vec-

tors from all the different types of observation matrices using

tensor decomposition techniques, where the signature vectors

are two unimodal vectors such that their peaks correspond to

the source location. We develop theoretical justification that

the pair of vectors extracted from the least squares rank-1 ten-

sor approximation under the Tucker’s model [4] are indeed

source signature vectors, as long as for each type of signals,

the energy propagation function is decreasing in distance. We

demonstrate that the proposed localization based on tensor de-

composition outperforms the heuristic baselines that simply

averages the estimates from different types of data individu-

ally.

Relation to Prior Work: Many existing source localiza-

tion techniques [5–7] require knowledge of the specific signal

propagation model, which is difficult to obtained in many ap-

plication scenarios. Model-free positioning schemes, such as

connectivity based localizations and weighted centroid local-

izations [8–11], may only provide coarse localization results

and their performance highly depends on the choice of al-
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gorithm parameters. Machine learning techniques, such as

kernel regression and support vector machines [12–14] usu-

ally arrive at solving non-linear regression problems, which

suffer from too many local optima for reliable localization

performance. Prior works [1, 2] proposed matrix observa-

tion models based on only RSS measurements, and advanced

algorithms were developed to separate two sources in [3],

and arbitrary number of sources in [15]. Preliminary work

[16] proposed a heuristic method to extract the signature vec-

tor using an outer product model for tensor decomposition.

More broadly, data fusion using Bayesian framework or other

heuristic methods were studied in [17–19]. Yet, they still need

to assume some parametric form of the propagation model.

2. SYSTEM MODEL

2.1. Signal Model

We wish to localize a source in an area with radius L/4. As-

sume that the source signals can be measured by a set of sen-

sors that are distributed randomly and uniformly in the target

areaA with radius L/2. Suppose that there are K > 1 modes

(i.e., types) of signals that can be detected from the source.

For example, an object can transmit electromagnetic waves

that form an energy field and a temporal field (i.e., RSS and

TOA observed at different locations), and it may also emit

acoustic waves due to mechanical movement.

LetMk be the set of sensors that measure the kth mode

signal (Mk andMj may contain the same sensor), d(z, s) ,
‖z − s‖2 be the distance from the source at s ∈ R

2 to the

reference location z ∈ R
2, and hk(d) be the kth mode signal

propagation function in distance d. The measurement h
(m)
k

of the kth mode signal by the mth sensor at location z(m) is

given by

h
(m)
k = αkhk(d(z

(m), s)) + n
(m)
k , m ∈ Mk

where n
(m)
k is additive noise with variance σ2

k and is assumed

to be independent across all signal modes k and all sensors

m. We assume that hk(d) are non-negative and strictly de-

creasing functions. In addition, they are normalized and con-

centrate in the target area A, i.e.,
∫∫

R2 hk(d(z, s))
2dz =

∫∫

A
hk(d(z, s))

2dz = 1, and α2
k denotes the total energy

of the kth mode signal. Note that, neither αk nor hk(d) are

known.

We discretize the L × L area that contains the target re-

gion, A, into N × N equally spaced grid points, where the

center location of the (i, j)th grid point is denoted as ci,j ∈
R

2. Let Hk ∈ R
N×N be the discretized mode-k signal field

matrix, where the (i, j)th entry of Hk is given by

Hk(i, j) =
L

N
αkhk(d(ci,j , s)). (1)

Let Hk ∈ R
N×N be a noisy and incomplete observation

of Hk based on the set of measurements {h
(m)
k }, where the

(i, j)th entry of Hk is specified as

Hk(i, j) =
L

N
h
(m)
k (2)

if the mth measurement for the kth mode signal is taken inside

the (i, j)th grid.

2.2. Matrix Decomposition for Single Mode Signal

Definition 1 (Signature Vector). The signature vectors of the

source s = (s1, s2) locating inside the (m,n)th grid are de-

fined as unimodal vectors w1 and w2, where they take maxi-

mum values at the mth and nth entries, respectively. Here, a

vector w ∈ R
N is unimodal if its entries satisfy 0 ≤ w1 ≤

w2 ≤ · · · ≤ ws ≥ ws+1 ≥ · · ·wN ≥ 0 for some integer

1 ≤ s ≤ N and wi is the ith entry of w.

In [1, 2], it has been shown that for some classes of en-

ergy fields, the location signature vectors of the source can

be extracted as the pair of dominant singular vectors of Hk.

Furthermore, one can show that there exists a symmetric func-

tion w(x) = w(−x), such that uk,1 and vk,1 can be dis-

cretized from w(x − s1) and w(x − s2), respectively. There-

fore, one may first apply a matrix completion algorithm to

fill in the missing entries of the noisy observation matrix Hk,

then extract the dominant signature vectors uk,1 and vk,1 from

the singular value decomposition (SVD) of Hk. Finally, the

source location estimate ŝk can be obtained by finding the

peaks of uk,1 and vk,1 [3].

The fundamental problem of this paper is to combine the

estimates ŝk, k = 1, 2, . . . ,K , from different signals. Note

that a simple average of ŝk may not work, because some Hk

may have too few entries to arrive at a good estimate ŝk from

the measurements of the kth mode signal. Although a good

combination can be obtained by weighting the estimates ŝk

by their variance, obtaining the exact variance of ŝk is not

possible, since the propagation model hk(d) is unknown.

2.3. Tensor Model for Multimodal Signals

We propose to extract a pair of common signature vectors

w1 andw2 from all the observation matricesH1,H2, . . . ,HK .

The intuition is that although the Hk are obtained based on

different propagation functions hk(d), they share the same

structure where they are unimodal (for each row and column

vectors) with peaks that appear at the same entry correspond-

ing to the source location.

We use the following notation to establish a tensor model.

Tensor: An order-3 tensor , denoted as X ∈ R
N1×N2×N3 ,

is an array of matrices X1,X2, . . . ,XN3
∈ R

N1×N2 ar-

ranged in such a way that the (i, j, k)th entry of X, denoted

as X(i, j, k), is given by the (i, j)th entry of Xk. A geometric

illustration of such a 3D data array is given in Fig. 1.
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Fig. 1. (Left) Different types of data collected at different

locations. The star represents the source. (Right) To arrange

the data into multiple layers according to the type of data, the

measurements form a sparse data cube (tensor X ).

Matrix unfolding: The order-p matrix unfolding, de-

noted as X(p), of a tensor X generated from matrices

X1,X2, . . . ,XN3
are defined as

X(1) = [X1,X2, . . . ,XN3
]T ∈ R

N2N3×N1

X(2) = [XT
1 ,X

T
2 , . . . ,X

T
N3

]T ∈ R
N1N3×N2

X(3) = [vec(X1), vec(X2), . . . , vec(XN3
)] ∈ R

N1N2×N3

where vec(X) = [xT
1,x

T
2, . . . ,x

T
N ]T and xi is the ith column

of X .

In this paper, we use X ∈ R
N×N×K to denote the un-

derlying signal field described by matrices H1,H2, . . . ,HK

defined in (1), whereas, the noisy observation of X, denoted

as X , is an array of (incomplete) matrices H1,H2, . . . ,HK

defined in (2).

3. COMMON SIGNATURE VECTORS FROM

RANK-1 TENSOR APPROXIMATION

We conjecture that the vectors obtained from the least squares

rank-1 approximation of X are also signature vectors. Note

that this is not obvious, since there exist many decomposition

models for a tensor. Herein, we prove this conjecture.

To formulate the problem, we use the form-p tensor-

matrix multiplication (also known as mode-p multiplication)

defined in [20]. Essentially, multiplying a N1×N2×· · ·×NP

tensor X by a M ×Np matrix A, denoted as X×p A, yields

a N1 × N2 × · · ·Np−1 × M × Np+1 × · · · × NP ten-

sor, with its (i1, i2, · · · , ip−1,m, ip+1, · · · , iP )th entry given

by
∑Np

ip=1 X(i1, i2, · · · , ip−1, ip, ip+1, · · · , iP )Am,ip , where

Am,ip is the (m, ip)th entry of A. In the special case for a

N1 × N2 tensor (i.e., matrix) X, we have X ×1 A ×2 B =
AXBT. Moreover, one can easily verify that X×pA×qB =
X×q B ×p A for p 6= q.

Using this notation, we define the least squares rank-

1 approximation of tensor X ∈ R
N×N×K as the vectors

w1,w2 ∈ R
N and w3 ∈ R

K that solve the following prob-

lem

P0 : minimize
w1,w2,w3,α

‖X− α×1 w1 ×2 w2 ×3 w3‖
2
F

subject to α > 0, ‖w1‖ = ‖w2‖ = ‖w3‖ = 1

where ‖X‖2F ,
∑

i

∑

j

∑

k X(i, j, k)
2 for an order-3 tensor

and ‖w‖ is the Euclidean norm for a vector.

Note that when K = 1, problem P0 degenerates to a ma-

trix SVD problem since α×1w1×2w2 = αw1w
T
2 , where the

solutions w1 and w2 are given by the dominant singular vec-

tors of X (as a matrix) and w3 = 1 will be a scalar. However,

in contrast to the matrix case, solving the global optimal so-

lution to P0 is, in general, NP-hard [21]. It is also not known

whether the solution preserves the desired unimodal property.

3.1. Unimodal Property

We find that the answer is affirmative: unimodality is pre-

served.

Theorem 1 (Tensor Unimodality). The optimal solutions w1

and w2 to problem P0 are unimodal. In addition, if the

source s locates inside the (m,n)th grid, then, the peaks of

w1 and w2 locate at the mth entry of w1 and the nth entry of

w2, respectively.

Proof. (Sketch). It can be shown that solving P0 is equiva-

lent to maximizing ‖X×1w
T
1×2w

T
2×3w

T
3‖

2
F under the same

set of constraints [20].

One can easily verify that

f(w1,w2,w3) , ‖X×1 w
T
1 ×2 w

T
2 ×3 w

T
3‖F

= |wT
1(X×3 w

T
3)w2|

=
∣

∣w
T
1(

K
∑

k=1

w3,kHk)w2

∣

∣

wherew3,k is the kth entry ofw3. It is clear that givenw3, the

maximum value of f is given by the dominant singular value

of X̃(3) ,
∑K

k=1 w3,kHk. It can also be shown that the op-

timal solution w3 must not contain negative entries (except

that all the entries of w3 are negative), as the entries of Hk

are non-negative due to (1). On the other hand, the optimal

solutions w1 and w2 that maximize f are the dominant sin-

gular vectors of X̃(3).

Therefore, it can be further verified that the dominant right

singular vector of X̃(3) is unimodal. First, the matrix R ,

X̃(3)TX̃(3) is unimodal since the rows of X̃(3) are unimodal

[22, Lemma 2], and so is the matrix Rq/tr{Rq} [22, Lemma

3]. Then, in the limit, R∞/tr{R∞} is rank-1 and unimodal,

and as a result, its eigenvector is unimodal, which means that

the dominant right singular vector of X̃(3) is unimodal. This

justifies that w2 is unimodal. Similar arguments apply to w1.
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Algorithm 1 Signature vector from a tensor model

1. Initialize Y from X (e.g., via matrix completion for

each component Hk [1, 2]).

2. Initialize w1, w2, and w3 by the right dominant singu-

lar vectors of Y(1), Y(2), and Y(3), respectively, where

Y(p) are the order-p matrix unfolding of Y .

3. Update sequentially: w1 ← (w3 ⊗w2)
TY(1)/‖(w3 ⊗

w2)
T
Y(1)‖, w2 ← (w3 ⊗ w1)

T
Y(2)/‖(w3 ⊗

w1)
TY(2)‖, w3 ← (w2 ⊗ w1)

TY(3), α = ‖w3‖,
w3 ← w3/α, where ⊗ denotes the Kronecker prod-

uct.

4. Update Y as the solution that minimizes ‖Y − α ×1

w1 ×2 w2 ×3 w3‖2F subject to ‖PΩ{Y −X}‖F ≤ ǫ.

5. Repeat from Step 3 until convergence.

3.2. Signature Vector from Noisy and Incomplete Obser-

vations

Given the noisy and incomplete observation X , one can ex-

tract the signature vectors by solving the tensor completion

problem

P1 : minimize
Y,w1,w2,w3,α

‖Y − α×1 w1 ×2 w2 ×3 w3‖
2
F

subject to ‖PΩ{Y −X}‖F ≤ ǫ

α > 0, ‖w1‖ = ‖w2‖ = ‖w3‖ = 1

where Ω is the set of observed entries, [PΩ{X}]ijk = xijk if

(i, j, k) ∈ Ω is observed, and [PΩ{X}]ijk = 0 otherwise.

Problem P1 can be solved by a block coordinate descent

algorithm [23] as summarized in Algorithm 1.

In the special case of complete and noiseless observations,

PΩ{X} = X, problem P degenerates to a tensor decompo-

sition problem. One can show the convergent vectors w1 and

w2 obtained from Algorithm 1 are unimodal (although they

may not be the global optimal solution to P1, which is a NP-

hard problem [21]). To see this, one can easily verify that w1

are w2 are unimodal after the initialization step and after each

iteration.

4. NUMERICAL RESULTS

We consider the source and sensor deployment model in Sec-

tion 2 with L = 200 meters. Half of the sensors detect the

RSS of the electromagnetic signal and the other sensors detect

the TOA from the acoustic signal. The noise-normalized RSS

signal is modeled as PdB(d) = 70−36×log10(max{10, d})+
S, where S ∼ N (0, σ2

s ) is to model log-normal shadow-

ing and σs = 10 dB. The TOA signal is modeled as t(d) =
d/c + b, where c = 340 m/s and b ∼ N (0, σ2

t ) is to model

R
o

o
t

M
S

E
[m

]

Matrix RSS [3]
Matrix TOA
Average
Tensor (Proposed)

Total number of Sensors

5

15

25

35

40 80 120 160 200

Fig. 2. Root MSE versus the total number of sensors.

synchronization errors and σt = 100 ms. To normalize the

data, we use h1(d) = exp(−β110
−PdB(d)/10) and h2(d) =

exp(−β2t(d)
2), where the parameters β1 and β2 are chosen

based on the raw measurements PdB and t such that the nor-

malized measurement data {h
(m)
1 : m ∈ M1} and {h

(m)
2 :

m ∈ M2} is roughly uniformly distributed over (0, 1). The

dimension parameter N is chosen as the largest integer satis-

fying 1.5N(logN)2 ≤
∑

k |Mk| [4]. The peak localization

algorithm for unimodal vectors in [3] is used for all schemes

to estimate the source location.

Fig. 2 shows the localization performance in root mean

squared error (MSE) versus the total number of sensors.

The “Matrix” schemes process the RSS and TOA data indi-

vidually, using the matrix observation model to extract the

source signature vector followed by peak localization to esti-

mate the source location [3]. The “Average” scheme simply

takes an average from the RSS and TOA based estimation

ŝavg = (ŝRSS + ŝTOA)/2. The proposed scheme extracts com-

mon source signature vectors from the RSS and TOA data

using Algorithm 1. It performs the best over all the schemes,

because it exploits the common unimodal structure from the

RSS and TOA data.

5. CONCLUSIONS

This paper developed a sparse tensor decomposition method

to extract the location signature vectors for source localiza-

tion from multimodal data. A tensor observation model was

proposed to arrange different types of measurements into dif-

ferent layers. It is shown that the vectors extracted from the

least squares rank-1 tensor approximation have a unimodal

property, where the peak locations of the vectors correspond

to the source location in x and y coordinates, respectively.

Based on such a theoretical guarantee, it is demonstrated that

the tensor method outperforms the baselines that simply aver-

age the estimates from different types of data individually.
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