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ABSTRACT

This paper considers an autonomous network in which the nodes
communicate only with their neighbors at random time instances,
repeatedly and independently. Polynomial graph filters studied in
the context of graph signal processing are inadequate to analyze sig-
nals on this type of networks. This is due to the fact that the basic
shift on a graph requires all the nodes to communicate at the same
time, which cannot be assumed in an autonomous setting. In or-
der to analyze these type of networks, this paper studies an asyn-
chronous power iteration that updates the values of only a subset of
nodes. This paper further reveals the close connection between asyn-
chronous updates and the notion of smooth signals on the graph. The
paper also shows that a cascade of random asynchronous updates
smooths out any arbitrary signal on the graph.

Index Terms— Graph signal processing, asynchronous itera-
tions, autonomous networks.

1. INTRODUCTION

In recent years there is an elevated interest in network structured
data where the underlying network models the dependency structure
between the data sources. This is a very broad model and can be
found in a variety of different contexts such as social, economic, and
biological networks, among others [1, 2].

The recent advancements in [3–5] studied the processing of sig-
nals defined over graphs. In these studies the analysis is based on
the “graph operator,” whose eigenvectors serve as the graph Fourier
basis (GFB). With the use GFB, sampling, reconstruction, multirate
processing of graph signals and some uncertainty results have been
extended to the case of graphs in [6–15].

In the context of graph signal processing there is no specific
definition for a “graph signal” that is agreed upon by all. In the
most well-known viewpoint a typical graph signal is assumed to be
smooth over the graph, that is, adjacent nodes of the graph have sim-
ilar values [4, 5, 16]. The amount of smoothness is quantified with
respect to the eigenvectors of the graph operator. If a signal has a
large projection onto an eigenvector with large variation, then the
signal is said to be non-smooth, hence anomalous on the graph [17].

Another interpretation for graph signals comes from physical
processes defined over graphs. A well-known example of this cat-
egory is the heat diffusion [18, 19], where the signal represents the
temperature of the nodes and it evolves over time with respect to
the solution of the heat equation on the underlying graph structure.
Diffusions are not limited to the heat. Other kernels have been con-
sidered as well [20]. This category also includes wavelets defined
over graphs [21, 22].

A different perspective is to interpret graph signals as data
points. In this approach, the underlying graph operator is assumed
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to represent the data at hand [23–25]. The graph (operator) is se-
lected in such way that it provides a useful (sparse, smooth, etc.)
representation for the data [26, 27].

In this study we will interpret graph signals in a different prob-
lem model. We will consider an autonomous network in which there
is no centralized control mechanism (e.g. a base station). An exam-
ple is wireless ad-hoc networks [28]. We assume that all the nodes
hold a value. Nodes communicate with their neighbors and update
their value at random time instances, repeatedly and independently
from each other. In this model we are interested in the general be-
havior of the values held on the nodes.

It is important to note that the notion of the graph shift is not di-
rectly applicable to this problem formulation. This is due to the fact
that the graph shift needs all the nodes to communicate at the same
time instance. Even though it is a local operator (requires commu-
nication only with neighbors) synchronization of the nodes is essen-
tial, which cannot be achieved in an autonomous setting. As a result,
polynomial filters based on the graph shift are not applicable as well.

In order to analyze this problem we will consider a variation of
the graph shift referred to as asynchronous power iteration. It will be
similar to the graph shift except the fact that only a subset of nodes
are updated in each iteration. Such a scheme is useful to analyze
autonomous networks, and will be shown to be closely related to the
notion of smooth signals.

In the following, we first provide an overview of the notation. In
Section 2 we define the asynchronous power iteration precisely and
elaborate on its connection to smooth graph signals. In Section 3 we
consider random cascades of asynchronous iterations and study their
convergence behavior.

1.1. Preliminaries and Notation

We will assume that A P CN�N is an operator on the graph of in-
terest on N nodes. We only require A to be a local operator, that is,
Ai,j � 0 when the nodes i and j are not neighbors. We allowAi,i to
be non-zero. Hence, the operator A can be the adjacency matrix, the
Laplacian, the normalized Laplacian, and so on. We assume that A
is a normal matrix and has the following eigenvalue decomposition:

A � V ΛV �, (1)
where V is a unitary matrix consisting of eigenvectors of A, and
Λ is the diagonal matrix with the eigenvalues. We will use V �

to denote the conjugate transpose of V . We allow eigenvalues to
have complex values in general. Given a signal x, its graph Fourier
transform (GFT), px, on the operator A is defined as:

px � V � x, or, x �
Ņ

i�1

pxi vi, (2)

where vi’s are the eigenvectors of A.
The number of elements in a set T is denoted by |T |. For a

vector x we use }x}8 to denote its largest element in absolute sense.
For a matrix V we use }V }8 to denote the largest absolute row-
sum, and use }V }max to denote the largest element. We will use ei
to denote the ith standard vector that has 1 only at the ith index.
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2. ASYNCHRONOUS POWER ITERATION

Given a matrix of interest A and a initial signal x0 the conventional
power iteration has the following form:

xk+1 � A xk, so that xk � Ak x0. (3)

Assuming that the eigenvalues of A satisfy |λ| ¤ 1 (or, normalizing
the vector xk after each iteration) the power iteration can be utilized
to compute the eigenvector of the matrix A with the largest eigen-
value. One such application is Google’s ranking algorithm [29].

In the context of graph signal processing, the matrix A is as-
sumed to be a local graph operator (shift matrix) and the signal Ax
is referred to as the shifted version of x on the graph [4]. From this
perspective xk+1 in (3) is the graph shifted version of xk. Since A is
assumed to be a local operator a single shift can be implemented on
the graph as a data exchange between the neighboring nodes. How-
ever, all the nodes need to send and receive data at the same time.
Therefore, the graph shift does not have a “distributed” implemen-
tation since it still requires a centralized timing/control mechanism
over the underlying graph.

In this study we will consider a variation of the power iteration,
where a subset of indices, T , are updated simultaneously and the
remaining ones stay as the same. More precisely, given an update
set T we consider the following asynchronous power iteration:

yi �
#
pAxqi, i P T ,
xi, i R T ,

(4)

where x is the initial vector and y is the vector after the iteration.
In words, this iteration computes the multiplication Ax, but it only
updates the values of the elements indexed by the set T , and keeps
the remaining elements the same. Eq. (3) will also be referred to as
“synchronous update” to distinguish it from (4). Both (3) and (4)
are also referred to as state recursions, where the graph signal x is
regarded as the state of a system [30]. The model in (4) can also be
considered as the Hopfield network without the non-linearity [31].

In the actual implementation of this scheme only the elements in
the set T need to be synchronized. When the update set is selected
as T � t1, � � � , Nu, the asynchronous iteration in (4) reduces to the
classical power iteration in (3). On the other extreme, if a single
node is updated, |T |�1, then no synchronization is required at all.

The asynchronous iteration defined in (4) can be written as a
matrix-vector multiplication as follows:

y �
¸
iRT

ei e
�
i x�

¸
iPT

ei e
�
i Ax �

�
I �

¸
iPT

ei e
�
i pA� Iq

�
x,

(5)
which can be converted into the graph Fourier domain as follows:

py � px� ¸
iPT

V �ei e
�
i V pΛ� Iq px. (6)

2.1. Interpretation in the Context of Graph Signal Processing

In order to relate the asynchronous iteration to graph signal process-
ing we first discuss the notion of smooth signals on graphs. For this
purpose we will consider the following definition:

Definition 1 (Smoothness Set). A graph signal x belongs to the set
Sε if its graph Fourier transform px � V �x satisfies

|pxj | |λj � 1| ¤ ε @ j (7)

on the given graph operator.

A signal x belongs to Sε if the difference between the graph
Fourier coefficients of x and Ax are not larger than ε in absolute
sense. Small values of ε implies that x and Ax are similar to each
other. Hence, we can interpret ε as a scale of the smoothness of

the signal x on the operator A. Here, the smoothness is quan-
tified with respect to the total variation (TV) of each eigenvector,
TVpviq � |λi � 1|, as in [17]. For a given value of ε, the set Sε
describes the signals with |pxj | ¤ ε { |λj � 1|, that is, the amount of
projection of x onto an eigenvector should decrease with respect to
the total variation of the eigenvector. For the case of ε � 0, it im-
plies that pxj � 0 for any λj � 1, that is, the signal x cannot have
any non-smooth (or, high frequency) component.

The condition in (7) is equivalent to upper bounding a weighted
max-norm of GFT of x, that is,

x P Sε ðñ �� pΛ� Iq px ��
8
¤ ε, (8)

where the weight matrix is selected as |Λ� I|. Therefore, Sε is a
convex set. More importantly, the set Sε depends on the underlying
graph operator. A signal that is smooth on one graph may not be
smooth on another graph.

The following theorem reveals the relationship between the
smooth graph signals and the asynchronous update in (4).

Theorem 1. Assume that the signal x belongs to Sε of a graph
with operator A. Then the signal y computed as in (4) satisfies the
following

}py � px}8 ¤ ε |T | }V }max}V }8 (9)

Proof: Assume that x P Sε. Then, we can write the following set of
inequalities:

|pyj � pxj | � �����e�j ¸
iPT

V �ei e
�
i V pΛ� Iq px����� (10)

¤
¸
iPT

��e�j V �ei
�� ���e�i V pΛ� Iq px��� (11)

¤
¸
iPT

}V }max

��V � ei
��
1

��pΛ� Iq px��
8

(12)

¤ ε |T | }V }max }V }8, (13)

where we use Hölder inequality in (11). The step in (12) uses (8),
and the fact that }V }8 is the largest `1-norm of the rows of V .
Then, we have the following:

}py � px}8 � max
j

|pyj � pxj | ¤ ε |T | }V }max }V }8, (14)

where the inequality follows from the fact that the bound in (13) is
valid for any j.

Corollary 1. Assume that the signal x belongs to Sε of a circulant
graph with the operator being either the adjacency or the Laplacian.
Then, the signal y computed as in (4) satisfies the following

}py � px}8 ¤ ε |T |. (15)

Proof: For circulant graphs the adjacency matrix and the Laplacian
can be diagonalized by the unitary DFT matrix of size N , in which
case we have }V }max � 1{?N and }V }8 � ?

N , hence the result
according to (13).

The bound given by Theorem 1 (and Corollary 1) is not tight
in general. Nevertheless, it provides a useful interpretation: after
a single asynchronous update, the amount of change in each GFT
coefficient is limited by the smoothness, ε, of the signal (up to some
graph dependent constant). In particular, if the signal is smooth on
the graph (belongs to Sε with ε being small), then amount of change
in each GFT coefficient is also small, that is, a smooth signal remains
to be (relatively) smooth on the graph after an asynchronous update.

This observation motivates us to use the model in (4) in order
to analyze the behavior of autonomous networks. When the update
set T has |T | � 1 a single iteration corresponds to the case of a
node updating its value. Here the local graph operator A models the
way nodes update their values. If a node computes the sum of its
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neighbors, then A is the adjacency matrix; if a node computes the
sum of differences with its neighbors, then A is the graph Laplacian;
if a node computes a weighted average of its neighbors, then A is
a weighted adjacency matrix. Therefore, the matrix A describes
what the nodes compute, and the update scheme in (4) describes the
dynamics of the network in time.

In this context Theorem 1 shows that if the graph signal is
smooth with respect to the underlying computation scheme (the
matrix A), then values remain to be smooth after a node updates
its value. Therefore, the values of the nodes are expected to form a
smooth signal on the operator A in general.

A single update, however, is not sufficient to model the general
behavior of a network of nodes. Since nodes communicate and up-
date their values randomly and repeatedly, we need to consider a ran-
dom cascade of updates in the form of (4). As a result, general be-
havior of the values held on the nodes is mathematically equivalent
to the limit of a random cascade of these updates. Since Theorem 1
considers the difference between only two consecutive iterations, it
is inconclusive regarding the limiting behavior of a random cascade.
A curious question is as follows: if the initial signal is not smooth
on A, does it get smoother over iterations? In the next sections we
will show that this is indeed the case.

3. CONVERGENCE OF ITERATIONS

In the following we will consider a general case and assume that t
nodes are updated at the same time. That is, the update set T is of
size |T | � t. Notice that t � 1 corresponds to the case where only
a single node is updated asynchronously, and t � N corresponds to
the power iteration defined in (3).

We first consider a single random iteration, which is written as:

y � Q x (16)
where x is a known deterministic initial vector, whereas Q is a ma-
trix random variable due to the fact that the underlying update set
T is random. We do not assume any prior information on T and as-
sume that all the sets of size t are equally likely. In the case of t � 1,
uniform prior means that all the nodes update their values at the same
rate. Then, the iteration matrix Q has the following distribution:

Q � I �
¸
iPT

ei e
�
i pA� Iq with probability

1�
N
t

� . (17)

Lemma 1. Expectation of the random matrix Q in (17) is:

ErQs � t

N
A�

�
1� t

N

	
I. (18)

Proof: We have

ErQs �
¸

T s.t.
|T |�t

1�
N
t

��I � ¸
iPT

ei e
�
i pA� Iq

�
(19)

� 1�
N
t

� ¸
T s.t.
|T |�t

I � 1�
N
t

�
��� ¸

T s.t.
|T |�t

¸
iPT

ei e
�
i

��� pA� Iq (20)

� I � 1�
N
t

��N -1
t-1

�
I pA� Iq, (21)

which gives the result in (18).
Notice that t{N is the fraction of the nodes that are being up-

dated concurrently, and it appears as the weight of the graph oper-
ator A in ErQs. When t � 0, we get ErQs � I , that is, no node
is updated, hence the signal stays the same. When t � N it means
all the nodes are updated at the same time and we get ErQs � A,
which corresponds to the case of power iteration in (3).

Next, we consider a cascade of k updates in the following form:

yrks � Qk Qk-1 � � � Q2 Q1 x, (22)

where yrks represents the vector after k iterations with x being the
initial vector. For the sake of clarity yrks will be denoted simply
with y, but it should be clear that y depends on k in general.

Let Ti be the set of nodes that are updated in the ith iteration
in (22). We assume that the size of Ti’s stays as the same through
updates, that is, |T1| � � � � |Tk| � t. Nevertheless, sets themselves
are different from one iteration to another and they are selected uni-
formly at random. Therefore Qi’s have the same distribution, which
is given in (17). We also assume that Ti’s are selected independently
from each other, hence Qi’s are independent as well.

For the specific case of t � 1 the problem set-up in (22) is suit-
able to analyze the scenario discussed in the previous section, that is,
nodes repeatedly communicate with their neighbors at random time
instances and update their value according to the graph operator A.
Here k denotes the total number of updates, and the question at hand
is the behavior of y as k goes to infinity. The following theorem
studies the limit of the expectation of the GFT of y.

Theorem 2. Let vj and λj be an eigenpair of A, and let pyj � v�j y

be the jth graph Fourier coefficient of y. Then the following is true:��1� t{N pλj � 1q��   1 ùñ lim
kÑ8

Erpyjs � 0, (23)

where t is the size of the update set of each iteration.

Proof: We have

Erpyjs � Erv�j ys � v�j ErQk Qk-1 � � � Q1s x (24)

� v�j ErQksErQk-1s � � � ErQ1s x � v�j
�
ErQs�k x (25)

where (25) follows from the fact that Qi’s are independent and iden-
tical random variables. By writing the kth power of ErQs using
(18) and the spectral decomposition of A given in (1), we get the
following:

Erpyjs � v�j V

�
t

N
Λ�

�
1� t

N

	
I


k
V � x (26)

� �
1� t{N pλj � 1q�k pxj . (27)

As a result,
��1� t{N pλj � 1q��   1 implies that Erpyjs goes to zero

as k goes to infinity.
The result of Theorem 2 suggests that some graph Fourier co-

efficients of the signal y in (22) converge to zero as the number of
asynchronous updates go to infinity if the corresponding eigenval-
ues are bounded in some sense. This is similar to the power iteration
in (3), where eigenvalues lying inside the unit complex circle are
known to converge to zero as iterations continue. However, the con-
vergence of a cascade of random asynchronous updates behaves in
some expected and unexpected ways as we shall discuss in the next
sections.

3.1. An Example on a Random Geometric Graph

In this section we will simulate the convergence behavior of asyn-
chronous iterations in (4) on the graph visualized in Figure 1(a).
This is a random geometric graph on N � 150 nodes, in which
nodes are distributed over the region r0 1s � r0 1s uniformly at
random. Two nodes are connected to each other if the distance
between them is less than 0.15. The graph operator is selected as
the normalized adjacency matrix, that is D-1{2 AD-1{2, where
A is the adjacency matrix and D is the diagonal degree ma-
trix. Eigenvalues of D-1{2 AD-1{2 can be arranged as follows:
1 � λ1 ¡ λ2 ¥ � � � ¥ λN ¡ -1, where λ1 � 1 and λ2   1 follow
from the fact that the graph in Figure 1(a) is connected.

Notice that λj’s for j ¥ 2 satisfy the condition in Theorem 2,
that is |1+t{Npλj-1q|   1 for any t ¥ 1. Therefore, as the total
number of random iterations, k, goes to infinity, expectation of pyj
goes to zero for all j ¥ 2. However, λ1 � 1 does not satisfy the
condition, hence Erpy1s does not converge to zero. As a result, we
expect that y approaches v1 as k goes to infinity.
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In order to validate this expectation we perform the following
experiment. We consider the case t � 1, that is, a randomly selected
single node updates its value at each iteration, and we observe the
value of |v�1 y| { }y}2 through iterations. This quantity corresponds
to the fraction of energy of y contained in the subspace spanned by
v1. Starting from the same initial vector x, we consider 5 different
runs each having k � 105 iterations. The fraction of energy through
iterations is given in Figure 1(b). For the sake of comparison, the
result of the power iteration in (3) (which is equivalent to the case of
t � N ) is also included.
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Fig. 1. (a) Random geometric graph with d � 0.15 on N � 150
nodes. (b) Fraction of the energy over iterations.

Unlike the power iteration in (3) in the case of random asyn-
chronous updates the fraction of energy does not increase monoton-
ically with the total number of iterations. This is due to the ran-
dom selection (lack of centralization) of the nodes. Some updates
might be adversarial to the convergence of the signal. In some cases
adversarial updates might occur more often, which slow down the
convergence (notice the difference between run#1 and run#3 in Fig-
ure 1(b)). Nevertheless, some other updates cancel them out in the
long run. Therefore, as k goes to infinity the signal y converges to
v1 up to a scale since |v�1 y| � }y}2 implies that y is in the span of
v1. This observation is consistent with the result of Theorem 2.

It is important to note that the results in Figure 1(b) do not
suggest that the power iteration converges faster than asynchronous
updates. In a single power iteration all N nodes update their values,
whereas only a single node updates its value in the asynchronous
case. Therefore the total number of updated nodes, which is found
by k �t, is the correct way to compare the convergence rates. Notice
that asynchronous updates in Figure 1(b) converge around k � 105

and have t � 1, whereas the power iteration has t � N � 150 and
converges around k � 700. This observation suggests that both the
asynchronous and the synchronous iterations require roughly the
same number of node updates for the convergence.

3.2. Convergence Regions

The condition |1+t{Npλ-1q|   1 in Theorem 2 defines a region of
convergence for the eigenvalues of the operator A for the case of
asynchronous updates. This region is a disk in the complex plane
centered at 1-N{t with radius N{t. These regions are visualized in
Figure 2 for various different values of t.

t = 1
t = 2
t = N

Im(λ)

Re(λ)

1-2N 1-N -1 1

Fig. 2. Convergence circles.

In the case of t � N the region reduces to the unit disk, which
is the condition on the eigenvalues for the power iteration to con-
verge. This is not surprising since the case of t � N corresponds to
the power iteration itself. However, as t gets smaller (less number of
nodes are updated concurrently), the convergence region gets larger.
This is an interesting result since the coefficients (in the decompo-
sition of the signal in terms of the eigenvectors) of a larger set of
eigenvectors converge to zero if some of the nodes are not updated
with the rest. Even if a single node remains the same in each it-
eration, t � N -1, the coefficients of some eigenvectors converge to
zero although their corresponding eigenvalues have absolute value
larger than unity. This is a remarkable property of the asynchronous
iterations since such coefficients (hence the signal itself) would blow
up in the case of the power iteration. In particular, the coefficients
of eigenvectors with eigenvalues located on the unit circle (except
λ � 1) converge to zero, which cannot happen in the case of the
power iteration. In order to verify this behavior we will consider
the asynchronous updates in the context of graph signals. For this
purpose, let A be the adjacency matrix of the directed cycle graph:

A �

�����
1

1
. . .

1

����� . (28)

Eigenvalues of A in (28) are known to be λn � ej2πpn-1q{N for
1 ¤ n ¤ N , and the corresponding eigenvectors are the columns of
the unitary DFT matrix [17].

The power iteration in (3) on the directed cycle graph corre-
sponds to the case that all the nodes update their values with the
values of the previous nodes. This operation is equivalent to the cir-
cular shift of the graph signal x. As power iterations are applied
repeatedly the initial signal cycles through N different states indefi-
nitely and do not converge to any point. This is a direct consequence
of the eigenvalues being on the unit circle: no eigenvalue is in the
convergence region, hence the coefficient of no eigenvector dies out
through iterations.

On the contrary, in the case of asynchronous iterations all the
eigenvalues except λ1 � 1 fall into the convergence region, that is,
|1� t{Npλn � 1q|   1 for any 1 ¤ t   N . Notice that the eigen-
vector that corresponds to λ1 � 1 is the constant vector, that is,
v1 � 1. Therefore, we expect the initial signal to converge to the
constant signal through asynchronous iterations. On the directed cy-
cle graph, a random asynchronous update with t � 1 is equivalent
to randomly selecting a node and assigning its value to the next one.
This operation results in two nodes with the same value. As random
updates are applied repeatedly the signal will have more and more
duplicate elements until all the elements are the same. This shows
that any initial signal converges to v1 (up to a scale) indeed. Such a
convergence cannot be achieved with the power iteration.

4. CONCLUDING REMARKS & FUTURE DIRECTIONS

In this study we assumed an autonomous network in which the nodes
update their values at random times, repeatedly and independently
via communicating with their neighbors. Since the notion of the
graph shift was not applicable to this problem setting, we considered
an asynchronous update scheme. We showed the close relation be-
tween smooth signals and the update scheme. The behavior of asyn-
chronous updates revealed that an arbitrary signal converges to the
eigenvector with eigenvalue λ � 1, which has zero total-variation.
This shows that an arbitrary signal gets smoothed out by the asyn-
chronous updates throughout the iterations. Therefore, a typical sig-
nal on an autonomous network is the smoothest signal with respect
to the graph operator.

In future we will analyze the convergence of asynchronous iter-
ations more rigorously and elaborate on the rate of convergence. We
will consider a more general scenario where nodes have different
rate of updates, which is equivalent to having a non-uniform prior
on the update sets. We will examine the effect of the noise as well.
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