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ABSTRACT
This paper presents a framework for perfect reconstruction two-
channel critically-sampled graph filter banks with spectral domain
sampling. Graph signals have a unique characteristic: sampling in
the vertex and graph spectral domains are generally different, in con-
trast to classical signal processing. Conventional graph filter banks
are designed using vertex domain sampling, whereas the proposed
approach utilizes a novel spectral domain sampling. Our proposed
technique leads to perfect reconstruction transforms for any type
of undirected graphs and can be applied both to combinatorial and
symmetric normalized graph Laplacians. Some filter bank designs
and an experiment on nonlinear approximation are shown to validate
their effectiveness.

Index Terms— Graph signal processing, spectral graph wavelets,
spectral domain sampling, dictionary design

1. INTRODUCTION

1.1. Motivation

Graph signal processing has emerged in many fields demanding
high-dimensional complex-structured data analysis [1], such as so-
cial/sensor/neuronal/traffic/electric networks, images/videos/point
clouds, and machine learning [2–8].

One of the key topics in graph signal processing is design of
transforms/dictionaries that represent signals on graphs sparsely.
There have been many approaches so far [9–18]. Among them,
critically-sampled (CS) perfect reconstruction transforms [9, 10, 15]
are often required since the number of transformed coefficients in
the spectral domain is the same as that of samples in the original
vertex domain signal. This leads to an efficient signal processing
system.

However, they can be realized in very restricted situations. For
example, a class of CS spectral graph wavelets/filter banks are only
applicable for signals on bipartite graphs, and the graph Laplacian
used must be normalized [9, 10]. It has also been shown that, except
for bipartite graphs, perfect reconstruction with low-degree polyno-
mial filters cannot be obtained [19]. A proposed M -channel CS sys-
tem can be applied to arbitrary graphs but requires interpolation at
the synthesis side, which is completely different from the structure of
the analysis bank [20]. Some vertex domain transforms [16, 21, 22]
are CS and perfect reconstruction, but they are applicable only for
specific type of graphs similar to the spectrum-based methods. In
some cases, their spectral responses are not very clear. These re-
stricted conditions for the graph wavelets/filter banks stem from ef-
fects of sampling in the graph spectral domain.

This work was supported in part by JST PRESTO Grant Number JP-
MJPR1656.

Sampling of graph signals has a unique behavior. In classical
(digital) signal processing, sampling is defined in an intuitive way,
i.e., every other sample is taken for downsampling (by two), and one
zero is inserted between samples for upsampling (by two). It is also
well known that downsampling broadens the bandwidth of the sig-
nal and the upsampling shrinks it and creates aliasing components.
In other words, for time domain signals, we can define the same
sampling in two different domains: Time and frequency (DFT) do-
mains. In contrast to that, it has been found that sampling of graph
signals in the vertex domain does not broaden or shrink the band-
width [23] with the only exception being the case of bipartite graphs.
This is problematic when we try to extend the classical signal pro-
cessing framework into the graph setting since the effect of vertex
domain downsampling does not have a simple representation in the
frequency domain. Spectral domain sampling of graph signals has
therefore been proposed in order to define sampling of graph signals
in the graph spectral domain [23].

In this paper, we propose a framework of two-channel CS graph
filter banks with spectral domain sampling (CSSGFBs). The pro-
posed graph filter bank is the first one that satisfies all of the follow-
ing desired properties.

1. Critical sampling.
2. Perfect reconstruction with the symmetric structure, i.e., the

analysis and synthesis banks have similar building blocks.
3. Independent of the graphs and variation operators used.

In the proposed framework, perfect reconstruction is possible not
only for the ideal filter banks, but also non-ideal ones, and they are
designed in the graph spectral domain.

Along with the structure of the CSSGFBs, we show that perfect
reconstruction is possible for any undirected graph, in contrast to the
conventional graph filter banks. The perfect reconstruction condition
can be quite similar to that of the classical signal processing. Some
design examples are shown along with an application to nonlinear
approximation.

1.2. Notation

A graph G is represented as G = (V, E), where V and E denote
sets of nodes and edges, respectively. Number of nodes is given
as N = |V|, unless otherwise specified. The (m,n)-th element of
adjacency matrix A is amn > 0 if the mth and nth vertices are
connected, or zero otherwise, where amn denotes the weight of the
edge between m and n. The degree matrix D is a diagonal matrix,
and its mth diagonal element is dmm =

∑
n amn. The combinato-

rial graph Laplacian is L := D−A and the symmetric normalized
graph Laplacian is L := D−1/2LD−1/2. Since L (or L) is a real
symmetric matrix, L can always be decomposed into L = UΛU>,
where U = [u0, . . . ,uN−1] is the orthonormal eigenvector matrix,
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Λ = diag(λ0, λ1, . . . , λN−1) (0 = λ0 < λ1 ≤ λ2 ≤ · · · ≤ λN−1)
is the diagonal eigenvalue matrix in which the eigenvalue is graph
frequency, and ·> represents the transpose of a matrix or a vector.

f ∈ RN is a graph signal, where the nth sample f [n] is assumed
to be located on the nth vertex of the graph. The graph Fourier
transform (GFT) is defined as f̃ [i] = 〈ui,f〉 =

∑N−1
n=0 ui[n]f [n].

2. SAMPLING OF GRAPH SIGNALS

In this section, we introduce two strategies of sampling of graph
signals: vertex and spectral domain methods. They are illustrated in
Fig. 1.

2.1. Vertex Domain Sampling

The conventional and widely used method for sampling graph sig-
nals in the vertex domain, which corresponds to the intuitive coun-
terpart of down- and upsampling in classical signal processing, is
defined as follows:

Definition 1 (Sampling of graph signals in vertex domain). Let
G0 = (V0, E0) and G1 = (V1, E1) be the original graph and the
reduced-size graph, respectively, where every vertex in G1 has one-
to-one correspondence to one of the vertices in G0. In the vertex
domain, downsampling of f to fd ∈ R|V1| and upsampling of fd to
fu ∈ R|V0| is defined as follows.

(GD1): Vertex domain downsampling. Keeping samples in V1.

fd[n] = f [n′] if v0,n′ ∈ V0 corresponds to v1,n ∈ V1. (1)

(GU1): Vertex domain upsampling. Placing samples on V1 into
the corresponding vertices in G0.

fu[n] =

{
fd[n

′] if v1,n′ ∈ V1 corresponds to v0,n ∈ V0
0 otherwise.

(2)

2.2. Spectral Domain Sampling

We now describe spectral domain sampling of graph signals intro-
duced in [23]. Several slightly different definitions are possible.
Here, we use one and refer to [23] for alternative definitions.

Definition 2 (Sampling of graph signals in graph spectral domain).
Let L0 ∈ RN×N and L1 ∈ RN/2×N/2 be the graph Laplacians
for the original graph and that for the reduced-size graph1, respec-
tively, and assume that their eigendecompositions are given by L0 =
U0Λ0U

>
0 and L1 = U1Λ1U

>
1 . The downsampled graph signal

fd ∈ RN/2 and upsampled graph signal fu ∈ RN in the graph
spectral domain are defined as follows.

(GD2): Spectral domain downsampling. f̃ is divided into two
that represent lower and higher graph spectra, respectively.
Then the flipped version of the higher frequency component
is added to the lower frequency component.

f̃d[i] = f̃ [i] + f̃ [N − i− 1] (3)

where i = 0, . . . , N/2− 1. This is easily represented in ma-
trix form fd = U1SdU

>
0 f , where Sd =

[
IN/2 JN/2

]
, in

which I and J are the identity and counter-identity matrices,
respectively.

1We consider even N for the sake of simplicity.
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Fig. 1. Downsampling of signals on graphs. The signal is downsam-
pled by two and bandlimited. The shaded areas represent different
signals. (a) Original graph signal. (b) (GD1): vertex domain down-
sampling. (c) (GD2): spectral domain downsampling.
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Fig. 2. Spectra of the original and downsampled signals. The under-
lying graph is a community graph with N = 100 and the signal is
downsampled by two.

(GU2): Spectral domain upsampling. Repeating the downsam-
pled spectrum and its flipped copy.

f̃u[i] =

{
f̃d[i] i = 0, . . . , N/2− 1

f̃d[N − i− 1] i = N/2, . . . , N − 1.
(4)

That is, fu = U0S
>
d U>1 fd.

An example for the downsampling of the graph signal on a com-
munity graph is shown in Fig. 2. In this example, the original signal
is set to be bandlimited and the reduced-size graph is made with
the Kron reduction technique [24]. From the knowledge of classical
signal processing, one expects the spectrum after downsampling to
be broadened. However, as shown in the figure, the vertex domain
sampling does not have such a characteristic; Its spectrum rapidly
oscillates. In contrast to that, the spectral domain sampling presents
the expected characteristics from its intuitive definition. This is why
we need to consider the graph signal processing systems using the
spectral domain sampling.

3. CS GRAPH FILTER BANKS WITH VERTEX DOMAIN
SAMPLING

The CS graph filter banks for bipartite graphs [9, 10] are introduced
in this section. Let us define a bipartite graph G = (L,H, E) where
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Fig. 3. CS graph filter banks. Left: Graph filter bank with vertex domain sampling. Right: Graph filter bank with spectral domain sampling.

vertices in G are divided into two disjoint sets L and H. We call
the vertices in L the lowpass channel and those in H the highpass
channel, for the sake of convenience. The number of signals in each
channel is determined on the basis of the graph-coloring result. Fig.
3 illustrates the entire transformation for one bipartite graph.

Similar to the regular signals, the downsampling and upsampling
operators can be defined as follows:

Sd,0 = IL ∈ {0, 1}|L|×N , Su,0 = S>d,0

Sd,1 = IH ∈ {0, 1}|H|×N , Su,1 = S>d,1
(5)

where IL (IH) is a submatrix of IN whose rows correspond to the
indices of L (H). Sampled signal can be represented as fd,0 =
Sd,0f and so on.

The CS graph filter banks with vertex domain sampling [9, 10]
are designed to satisfy the following perfect reconstruction condi-
tion:

Tv = G0Su,0Sd,0H0 + G1Su,1Sd,1H1

= G0H0 + G1H1 − (G0Su,1Sd,1H0 + G1Su,0Sd,0H1)

= c2IN . (6)

where c is an arbitrary real number, Hk = UHk(Λ)U> is the kth
filter in the analysis bank, and Gk = UGk(Λ)U> is one in the
synthesis bank, in which

Hk(Λ) = diag(Hk(λ0), Hk(λ1), . . . , Hk(λN−1))

Gk(Λ) = diag(Gk(λ0), Gk(λ1), . . . , Gk(λN−1)).
(7)

For perfect reconstruction, the spectral folding term in (6) must be
zero. As a result, the CS graph filter bank with the vertex domain
sampling must satisfy the following conditions:

G0(λ)H0(λ) +G1(λ)H1(λ) = c2

G0(λ)H0(2− λ)−G1(λ)H1(2− λ) = 0.
(8)

Based on this perfect reconstruction condition, several methods for
yielding (near) perfect reconstruction graph filter banks have been
proposed [9, 10, 15, 18, 25].

4. CS GRAPH FILTER BANKS WITH SPECTRAL DOMAIN
SAMPLING

4.1. Framework

The proposed CSSGFB is shown in Fig. 3. As in the graph filter
banks for bipartite graphs [9, 10], it contains analysis and synthesis
filters, downsampling, and upsampling. It is also similar to its clas-
sical signal processing counterpart. However, the definitions of sam-
pling are different from the conventional approach, i.e., our method
is fully designed in the graph spectral domain. Additionally, we do

not make any assumptions on the graph used and the normalized
graph Laplacian does not have to be used.

Sampling matrices in the spectral domain are defined as

S̃d,0 =
[
IN/2 JN/2

]
, S̃u,0 = S̃>d,0

S̃d,1 =
[
IN/2 −JN/2

]
, S̃u,1 = S̃>d,1.

(9)

The downsampling and upsampling matrices for the lowpass branch
are the same as the original spectral domain sampling (GD2) and
(GU2) introduced in Section 2.2, whereas those in the highpass
branch are their modulated versions. As a result, signals after the
analysis and synthesis transforms are, respectively, represented as
follows.

fk = U1,kS̃d,kHk(Λ)U>0 f

f̂k = U0Gk(Λ)S̃u,kU>1,kfk,
(10)

where U1,k is an arbitrary eigenvector matrix for the kth subband.
Since our framework is fully designed in the spectral domain, U1,k

is usually not required. Additionally, for multi-level transform, the
transformed coefficients are not required to transform back into the
vertex domain in each level. This is because the inverse GFT of the
previous level and the GFT in the current level is cancelled. If one
needs the vertex domain coefficients in each branch, they can be ob-
tained by appropriately defining the graph (and the graph Laplacian)
of the corresponding size.

4.2. Perfect Reconstruction Condition

From the above structure, the perfect reconstruction condition is ex-
pressed as follows.

Theorem 1. The two-channel CSSGFB defined in the previous sub-
section is a perfect reconstruction transform, i.e., f̂ = c2f where
c is an arbitrary real number, if the graph spectral responses of the
filters satisfy the following relationship for all i.

G0(λi)H0(λi) +G1(λi)H1(λi) = c2 (11)
G0(λi)H0(λN−i−1)−G1(λi)H1(λN−i−1) = 0. (12)

Proof. From the definition, f̂ can be written as:

f̂ =U0G0(Λ)S̃u,0S̃d,0H0(Λ)U>0 f

+ U0G1(Λ)S̃u,1S̃d,1H1(Λ)U>0 f .
(13)

Since U0 is an orthogonal matrix, if the transfer matrix

Ts := G0(Λ)S̃u,0S̃d,0H0(Λ) +G1(Λ)S̃u,1S̃d,1H1(Λ) (14)

is the identity matrix (up to scaling factor), the whole transform is
perfect reconstruction. By substituting (9) into (14), Ts is rewritten
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as

Ts = G0(Λ)
[
IN/2 JN/2

]> [
IN/2 JN/2

]
H0(Λ)

+G1(Λ)
[
IN/2 −JN/2

]> [
IN/2 −JN/2

]
H1(Λ)

= G0(Λ)(IN + JN )H0(Λ) +G1(Λ)(IN − JN )H1(Λ)

= G0(Λ)H0(Λ) +G1(Λ)H1(Λ)

+
(
G0(Λ)H0(Λ

′)−G1(Λ)H1(Λ
′)
)
JN , (15)

where Λ′ = diag(λN−1, . . . , λ0). If the filters satisfy (11) and (12),

G0(Λ)H0(Λ) +G1(Λ)H1(Λ) = c2IN

G0(Λ)H0(Λ
′)−G1(Λ)H1(Λ

′) = 0N .
(16)

It leads to Ts = c2IN .

This perfect reconstruction condition implies that the proposed
CSSGFBs can be regarded as a generalized version of the conven-
tional graph filter banks such as graph-QMF [9] and graphBior2 [10].
Though the set of ideal filters clearly satisfies (11) and (12), the pro-
posed CSSGFBs are more general and sometimes non-ideal filters
outperform the ideal one (examples are shown in the next section).
Note that the existing approaches with the vertex domain sampling
cannot guarantee perfect reconstruction even when the ideal filters
are used both in the analysis and synthesis banks.

5. DESIGN EXAMPLES AND APPLICATIONS

As mentioned in the previous section, we have some freedom for fil-
ters that satisfy (11) and (12). In this paper, we design an appropriate
H0(λ) and remaining filters are set as H1(λi) = H0(λN−i−1) and
Gk(λi) = Hk(λi). Inspired by [15], we utilize frequency responses
of time domain filters to designH0(λi). First, a real-valued function
H freq

0 (ω) where ω ∈ [0, π] is obtained from the time domain filter,
thenH0(λi) is calculated according to the eigenvalue distribution of
the graph Laplacian. That is, H0(λi) = H freq

0 (πi/N).
In this paper, we used two H freq

0 (ω): One is designed based on
Haar wavelet (denoted as Haar-CSSGFB) and the other is designed
based on Meyer kernel (denoted as Meyer-CSSGFB). The design
examples are shown in Fig. 4. The graph used is community graph
with N = 400 as shown in Fig. 5. As can be seen, the energy
of the transform is constant over all λ, so the perfect reconstruction
condition is satisfied.

As an example application, we perform nonlinear approxima-
tion of graph signals to validate the effectiveness of the proposed
CSSGFBs. Along with the Haar- and Meyer-CSSGFBs, we also use
the ideal filters (denoted as Ideal-CSSGFB) that are also guaranteed
perfect reconstruction with our framework. The synthetic graph sig-
nal used is shown in Fig. 5. In the experiment, all of the transforms
perform two-level octave-band decomposition, then fractions of co-
efficients with high magnitudes are kept and remaining coefficients
are set to zero.

As previously mentioned, our CSSGFBs can be applied both
to the combinatorial and symmetric normalized graph Laplacians.
Therefore, we examine two graph Laplacians. Thresholding of the
transformed coefficients for the proposed method is done in the spec-
tral domain since our framework is fully designed in the spectral
domain as presented in Sec. 4.1. The performance is compared
with graphBior [10]. Note that bipartition of the underlying graph

2We omit the proof due to the limitation of space. It will be available in
the journal version of this paper in the future.
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Fig. 4. Design examples of the proposed CSSGFBs. Left: Haar-
CSSGFB. Right: Meyer-CSSGFB. Black dotted and dashed lines
represent (11) and (12), respectively.
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Fig. 5. Original graph signals and results of nonlinear approxima-
tion. Top row: Signals in the vertex domain. Middle row: Signals
in the graph frequency domain. Bottom row: Results of nonlinear
approximation. Left column: Community graph (N = 400). Right
column: Sensor graph (N = 100).

is needed for the graphBior, and a coloring-based bipartition [10,26]
is used in this paper as suggested by the authors.

The results of the nonlinear approximation are shown in Fig. 5.
It is clear that the proposed CSSGFBs with the combinatorial graph
Laplacian outperform the graphBior. CSSGFBs with the symmetric
normalized graph Laplacian (including the graphBior) present simi-
lar performances. In this example, Ideal-CSSGFB is not always the
best among the proposed transforms. Indeed the performance de-
pends on the signals and the graphs, but we can use the proposed
transforms according to them.

6. CONCLUSIONS

In this paper, a new design method of CSSGFBs was proposed. It
is based on the sampling of graph signals in the spectral domain. It
is able to satisfy the perfect reconstruction condition for any type
of graphs in contrast to the other graph filter banks with vertex do-
main sampling. Through the experiment on nonlinear approxima-
tion, some of the proposed transforms significantly outperform the
conventional graph filter bank. Constructing M -channel transforms,
developing faster methods, and deriving relationships with conven-
tional graph filter banks are a list of our future work.
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