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ABSTRACT

This paper considers the problem of inferring the topology of a graph
from noisy outputs of an unknown graph filter excited by low-rank
signals. Limited by this low-rank structure, we focus on solving the
community detection problem, whose aim is to partition the node set
of the unknown graph into subsets with high edge densities. We pro-
pose to detect the communities by applying spectral clustering on
the low-rank output covariance matrix. To analyze the performance,
we show that the low-rank covariance yields a sketch of the eigen-
vectors of the unknown graph. Importantly, we provide theoretical
bounds on the error introduced by this sketching procedure based on
spectral features of the graph filter involved. Finally, our theoretical
findings are validated via numerical experiments.

Index Terms— graph signal processing, graph filter, topology
identification, low rank excitation, community detection

1. INTRODUCTION

The emerging fields of Network Science and Big Data have broad-
ened the scope of signal processing to also include the analysis of
discrete signals defined on graphs [1–3]. Under the assumption that
the signal properties are related to the topology of the graph where
they are supported, the goal of graph signal processing (GSP) is to
develop algorithms that leverage this relational structure in various
ways, including inferring these relationships when they are only par-
tially observed [3]. A suitable way to accomplish these objectives
is to rely on the so-called graph-shift operator (GSO), which is a
matrix that reflects the local connectivity of the graph and general-
izes the shift operator used in time series analysis [2]. Most GSP
works assume that the GSO (hence the graph) is known, and then
analyze how the algebraic and spectral characteristics of the GSO
impact the properties of the signals and filters defined on such a
graph. This approach led to the extension of classical problems to
the realm of graphs signals such as sampling [4, 5] and reconstruc-
tion/interpolation [6, 7]. Our focus here is to investigate how to use
graph signals information to infer aspects of the underlying topol-
ogy. In particular, in this paper we focus on inferring from a graph
signal the community structure [8] of the underlying graph.

Network topology inference from a set of (graph-signal) obser-
vations is a prominent problem in Network Science [3] with classical
approaches for its solution including partial correlations [9], Gaus-
sian graphical models [10], and structural equation models [11, 12],
among others. More recently, GSP-based network inference meth-
ods emerged that take a system identification approach to solving
the network inference problem. Specifically, they postulate the ex-
istence of a network as a latent underlying structure and of a model
that ties the observations to a network dynamical process defined
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Fig. 1. Overview of the approach in this paper. We observe graph signals
that are outputs of a low-pass graph filter subject to low-rank excitations,
e.g., when the excitations affect a small number of nodes as illustrated above.
From these limited observations, we apply spectral clustering to recover com-
munities of the unknown graph.

on such a graph [13–21]. In order to infer the graph topology from
the observed graph signals, the approaches we just mentioned rely
on different assumptions such as smoothness of the observed sig-
nals [13–15], richness of the input signals [16–18], or partial knowl-
edge of the involved filter or dynamic on the graph [19–21].

In this paper, we model the graph signals observed as the outputs
of an unknown graph filter subject to low-rank excitations i.e., inputs
that belong to a low-dimensional space or that are sparse [see Fig. 1].
For example, we may observe the outcome of a rumor that originates
from a few sources (sparse excitation) and evolves via an opinion dy-
namics in the network (modeled by the unknown graph filter). Under
this weaker set of assumptions, in general, the exact inference of the
underlying graph is infeasible. Nonetheless, we show that the com-
munity structure of this unknown graph can be recovered in this laxer
setting. To show this result, we rely on (i) the concept of sketching
and the theory behind its recent application to the acceleration of
spectral clustering algorithms [22, 23]; (ii) the concept of low-pass
graph filters which generalizes a number of graph processes includ-
ing diffusion. Our contributions are twofold. First, we show that the
covariance matrix of the observed graph signals retains a sketch of
the principal eigenvectors of the underlying GSO. Second and more
importantly, we provide a theoretical characterization of the perfor-
mance attainable when spectral clustering is applied to the output
covariance matrix of the GSO. Using as a benchmark the communi-
ties that spectral clustering would output when perfect knowledge of
the underlying graph is available, we bound the error in the detection
of communities in terms of the spectral properties of the graph filter
involved. Consequently, this bound can be used to identify linear
network dynamics – modeled as graph filters – that are amenable to
the problem of community detection.

Notation. We use boldfaced lower-case (resp. upper-cased) letters
to denote vectors (resp. matrices). For a vector x, the notation xi
denotes its ith element. For a matrix X , the notation Xij denotes
its (i, j)th element whereas [X]i,: denotes its ith row vector. Also,
R(X) ⊆ RN denotes the range space of X ∈ RN×M . For a sym-
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metric matrixE, βi(E) denotes its ith largest eigenvalue. For a ma-
trix M ∈ RP×N , it admits the partition M = [MK MN−K ] with
MK (resp. MN−K ) denotes the matrix consisting of the left-most
K (resp. right-most N − K) columns of M . Similarly, m ∈ RN

is partitioned intom = [mK ;mN−K ], wheremK (resp.mN−K )
consists of its top K (resp. bottom N −K) elements.

2. GRAPH SIGNALS AND COMMUNITY DETECTION

Next, we formally introduce the GSP terminology that will be used
throughout the paper and we briefly present the classical approach
of spectral clustering for community detection.

Graph signals and graph filters. Let G = (V,E) denote an undi-
rected graph with a set of nodes V := {1, ..., N} and a set of
links E ⊆ V × V , such that if node i is connected to j, then
both (i, j) and (j, i) belong to E. We define the adjacency matrix
A ∈ RN×N as a matrix with non-zero elements Aij = Aji if and
only if (i, j) ∈ E. The adjacency matrix can be used to define the
degree matrix D := diag(A1) and the (combinatorial) Laplacian
matrix as L := D − A. Graph signals defined on the nodes of
G are functions f : V → R, equivalently represented as vectors
x = [x1, ..., xN ]> ∈ RN , where xi denotes the signal value at node
i. The graph G is endowed with the so-called graph shift operator
S ∈ RN×N , a matrix whose entry Sij can be non-zero only if i = j
or if (i, j) ∈ E. In this paper, we consider the case in which the
GSO is given by the graph Laplacian, i.e. S = L, and has an eigen-
value decomposition given by S = V ΛV > where Λ = diag(λ)
and λi is sorted in an ascending order 0 = λ1 ≤ λ2 ≤ . . . ≤ λN .

The shift S can be used to define linear graph-signal operators
denominated graph filters that have the form

H(S) :=
∑L−1

`=0 h`S
` = V

(∑L−1
`=0 h`Λ

`
)
V > . (1)

For a given input z, the output of the filter is simply x = H(S)z.
The coefficients of the filter are collected intoh := [h0, . . . , hL−1]>.
Graph filters are of particular interest because they represent linear
transformations that can be implemented locally and, thus, can be
used to model linear network dynamics. Leveraging the spectral
decomposition of S, graph filters and signals can be represented in
the frequency domain. To be precise, let us use the eigenvalues of S
to define theN×LVandermonde matrix Ψ, where Ψij := (λi)

j−1.
Then, the frequency representations of a signal z and of a filter h
are defined as z̃ := V >z and h̃ := Ψh. Exploiting such repre-
sentations and with � denoting the elementwise product, the filter’s
output x=H(S)z in the frequency domain is given by

x̃ = diag
(
Ψh
)
V >z = h̃� z̃ . (2)

This is analogous to the convolution theorem for temporal signals.

Low-pass graph filters. Out of all possible filters, low-pass graph
filters play a fundamental role for community detection. Formally,
we say that a graph filter is low-pass and (K, η)-separable if

h̃K+1/h̃K ≤ η < 1, h̃N ≥ 0 and h̃i ≥ h̃i+1 , (3)

for all i = 1, . . . , N − 1. Notice that since h̃i ≥ h̃i+1, the eigen-
vectors of H(S) corresponding to the largest K eigenvalues are the
left-most K vectors in V , denoted by VK . Common examples of
low-pass and (K, η)-separable graph filters (for all K) [15, 16] in-
clude H1(S) = (I + S)−1, H2(S) = exp(−S), and H3(S) =
(I − αS)L−1 for 0 < α < 1/λN . FilterH1(S) can be regarded as
the natural extension of a single pole IIR filter to the graph domain,

and H3(S) is an FIR filter modeling the effect of L−1 steps of a
diffusion process.

If η ≈ 0, i.e., the frequency response declines sharply from the
Kth to the (K+1)th frequency,H(S) is approximately rank-K. In
fact, Section 3 reveals that a small value of η is essential to obtain
a tight theoretical guarantee on detecting K communities from the
unknown graph. We remark that a small value of η can typically be
achieved by increasing the graph filter order L.

Community detection via spectral clustering. For an undirected
graph G = (V,E), a community is intuitively a set of nodes with
higher edge density among themselves than to nodes outside the set.
Thus, the problem of K-community detection amounts to finding K
such disjoint communities C1, . . . , CK such that V = C1∪· · ·∪CK .
A well-known way to establish a sense of optimal partition of the
node sets into communities is that of minimizing the ratio cut [24].
Formally, defining the cut weight between two node sets as the sum
of edge weights between them, i.e., ACi,Cj :=

∑
k∈Ci,k′∈Cj Akk′ .

The ratio cut of a given partition is defined as

RatioCut(C1, . . . , CK) := (1/2)
∑K

i=1ACi,Ci/|Ci| , (4)

where Ci is the complement of Ci. Unfortunately, the ratio-cut min-
imization problem is hard due to its combinatorial nature. As a rem-
edy, a widely used heuristic is the spectral clustering method [25]
which can be seen as a convex relaxation of the ratio-cut minimiza-
tion problem. Spectral clustering can be described as a two-step
process1. First, every node is projected onto RK , where the coordi-
nates of node i are given by [Vi1, . . . , ViK ], i.e., the ith row vector
of the left-mostK columns of V . Secondly, theK-means clustering
method [26] is applied to the resulting projected space to obtain the
sought K communities.

3. COMMUNITY DETECTION FROM LOW-RANK DATA

Our goal is to detect communities in a graph when we do not have
access to the graph itself – nor, equivalently, the GSO S – but rather
to a set of graph signals defined on it. Formally, we observe a set of
graph signals yt ∈ RN , t = 1, ..., T that are noisy observations of
the output of a low-pass and (K, η)-separable graph filter (1):

yt = xt +wt and xt = H(S)zt , (5)

where the observation noise is wt ∼ N (0, σ2I) and the excitation
signal zt ∈ RN is zero mean.

Unlike previous work [16] that tackles the problem of identify-
ing S from a full-rank excitation model where E[zt(zt)>] = I , this
paper focuses on low-rank excitation in which

Cz = E[zt(zt)>] = BB>, (6)

whereB ∈ RN×R with R < N . Practical scenarios that lead to (6)
include the cases where the input signal zt is applied on only a subset
of R nodes and where the number of variations in the excitation
signal is limited to R modes. Under this low-rank excitation model,
the covariance matrix of a general output signal xt is given by

Cx = E[xt(xt)>] = H(S)BB>H(S)>, (7)

whose rank is at mostR. Inferring S fromCx is challenging for two
reasons: i) we do not assume perfect knowledge of the specific filter
coefficients h defining H, and ii) information is in general lost due
to the low-rank nature ofBB>. Nevertheless, we show that we can
recover the community structure inS by applying spectral clustering
directly onCx, or its estimate Ĉx.
1Minor variations to the method presented here co-exist in the literature.
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Algorithm 1 Community detection from low-rank excitation.

1: Input: Graph signals {yt}Tt=1; desired number of clusters K.
2: Use {yt}Tt=1 to compute the sample covariance Ĉy as in (9).
3: Find the K eigenvectors to Ĉy associated with the largest K

eigenvalues. Denote the set of eigenvectors as P̂K ∈ RN×K .
4: Perform K-means clustering (e.g., [26]), which optimizes:

min
C1,...,CK

K∑
i=1

∑
j∈Ci

∥∥∥p̂j −
1

|Ci|
∑
q∈Ci

p̂q

∥∥∥2
2

s.t. Ci ⊆ V, (8)

where p̂i := [P̂K ]i,: ∈ RK . Let the solution be Ĉ1, ..., ĈK .
5: Output: Partition of V into K communities, Ĉ1, ..., ĈK .

3.1. Community detection algorithm

From the observed graph signals {yt}Tt=1 [cf. (5)] we construct the
empirical sample covariance

Ĉy = (1/T )
∑T

t=1 y
t(yt)>, (9)

and apply the spectral clustering procedure presented in Section 2
but only based on the eigenvectors of Ĉy associated to theK largest
eigenvalues. This algorithm is summarized in Algorithm 1.

We first discuss the intuition behind the algorithm we pro-
pose. First notice that the filter H(S) is a matrix polynomial on
the symmetric matrix S [cf. (1)] and, as such, preserves its eigen-
vectors. Moreover, since R < N , the matrix H(S)B ∈ RN×R

is a ‘sketch’ of H(S) with B being the sketching matrix. On the
other hand, if R ≥ K and the graph filter is (K, η)-separable
with a small η, the top-K eigenvectors of H(S) can be pre-
served in the sketched version since H(S) is approximately rank
K. Indeed, when R(B) = R(VK), it is easy to observe that
R(H(S)B) = R(VK). In this case, applying Algorithm 1 based
on the covarianceCx = H(S)BB>H(S)> yields the same output
as applying spectral clustering on S.

In most cases, however, Algorithm 1 will not return the same
communities as those obtained by spectral clustering on the GSO
S. There are two sources for this discrepancy. First, the sketching
matrix B does not share the range of VK in general, thus there will
be a discrepancy with respect to the eigenvectors in H(S). Second,
having access to a finite set of graph signals, we do not observe Cx

perfectly but rather an estimate Ĉx of it. In the next section we
bound the error introduced by these two sources of inaccuracy.

3.2. Theoretical Guarantees

Denote by {Ĉ1, . . . , ĈK} the community structure obtained from Al-
gorithm 1. Our goal is to find out how close these communities are
to the ones obtained when S is available. To do so, we measure
the optimality of the clustering result by comparing the following
objective — let C1, ..., CK be any partition of V ,

F (C1, ..., CK) :=

K∑
i=1

∑
j∈Ci

∥∥∥vj − 1

|Ci|
∑
q∈Ci

vq

∥∥∥2
2
, (10)

where vi := [VK ]i,:, i = 1, ..., N . Notice that (10) is the same
objective function used in step 4 of Algorithm 1, but applied to the
eigenvectors of the GSO S instead. In general, F (C1, ..., CK) can
only be minimized when S is known perfectly.

Let us introduce the following definitions. The singular value
decomposition of H(S)B is given by H(S)B := PΣQ> with

σ1 ≥ σ2 ≥ . . ., the difference between the covariance and the sam-
ple covariance is ∆ := Ĉy −Cx. We have:

Theorem 1 If the following conditions hold:

1. H(S) is a low-pass and (K, η)-separable filter [cf. (3)],

2. Step 4 of Algorithm 1 finds a solution Ĉ1, ..., ĈK that exactly
minimizes the problem (8),

3. rank(VKdiag(h̃K)V >K BQK) = K,

4. σK > 0,

5. ∃ δ > 0 such that ‖∆‖2 + δ ≤ βK(Cx)− βK+1(Cx),

then, denoting by F ? := minC1,...,CK⊆V F (C1, ..., CK) as the opti-
mal cost associated with spectral clustering with perfect knowledge
of S, we have that√

F (Ĉ1, ..., ĈK)−
√
F ? ≤

√
8K

(√
γ2

1 + γ2
+
‖∆‖2
δ

)
, (11)

where γ is bounded by

γ ≤ η · ‖V >N−KBQK‖2‖(V >K BQK)−1‖2 . (12)

The proof of Theorem 1 – partially inspired by [22] – is omitted here
due to space limitations but can be found in an online appendix.2

As desired, (11) bounds the difference between the optimal
cost F ? associated with running spectral clustering in the ideal case
of perfect information and the cost achieved by the communities
{Ĉ1, ..., ĈK} identified from our algorithm. This optimality gap
consists of the two summands on the right-hand side of (11). The
first summand, which depends on γ, captures the distortion intro-
duced by the sketching operation. From (12) it follows that this
optimality gap depends on the parameter η of the low pass graph
filter, which might be improved for higher filter order L, as dis-
cussed in Section 2. Furthermore, expression (12) reveals that γ
depends on the angle betweenR(BQK) andR(VK). In particular,
ifR(BQK) = R(VK), then ‖V >N−KBQK‖2 = 0 and γ = 0.

The second summand in the right-hand side of (11) bounds the
error resulting from the fact that we have access to a finite number
of signals. This bound follows from applying the classical Weyl’s
inequality combined with Davis-Kahan theorem [27]. Theorem 1
shows that when the magnitude of the error ∆ is small compared to
the relevant spectral gap of Cx [cf. Condition 5], then the additive
error introduced will simply be proportional to ‖∆‖2. Moreover, us-
ing standard results from concentration inequalities and under mild
assumptions on the statistics of zt, the error ‖∆‖2 decays to σ at the
rate of O(1/

√
T ) with high probability. Overall, Theorem 1 shows

that when the graph filter has a favorable frequency response, and
the number of collected samples is sufficient, we expect Algorithm 1
to produce communities comparable to those obtained by applying
spectral clustering on S.

4. NUMERICAL EXAMPLES

This section presents numerical results to illustrate the performance
of our low-rank community detection approach. We first focus on
a controlled setting where the GSO and the associated graph sig-
nals are generated synthetically. More precisely, we consider an
undirected graph G generated according to a stochastic block model
(SBM) with K communities, i.e. G ∼ SBM(N,K, a, b) such that a

2http://www.public.asu.edu/˜hwai2/pdf/gsp_app.pdf
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Fig. 2. (Effect of filter order L and observation rank R). Matrix
S is adjacency matrix of SBM graphs with N = 150 nodes and
K = 3 communities, andH(S) = (I −αS)L−1, under a noiseless
observation setting with Ĉx = Cx.
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Fig. 3. (Effect of sample size T ). Similar settings as in Fig. 2 with
R = 15. We consider noisy observations and only a finite number
of samples are observed T .

and b are the probabilities that an edge is formed within a community
and between the communities, respectively, and we have that a > b.
The graph filter used is H(S) = (I − αS)L−1 for α = 1/(2dmax)
where dmax = maxi di and di is the degree of node i. The filter
order is given by L. It is immediate to check that the graph filter is
low-pass and (K, η)-separable. The corresponding η is given as:

η =
(1− αλK+1

1− αλK

)L−1

. (13)

Since α < 1/λN , we have 1−αλK+1 < 1−αλK if λK+1 > λK .
Therefore, we anticipate η to decrease to zero as L increases. Fur-
thermore, the low-rank excitation signal is generated as zt = Bz̃t

where z̃t ∈ RR satisfies z̃t ∼ N (0, I), B is a row-sparse binary
matrix with only R non-zero rows, chosen at random, and each row
has only d(R/N)die ones, also chosen at random. This corresponds
to the setting when the graph is excited only on R nodes and each is
driven by a few independent sources. The results reported here cor-
respond to the average of 1000 Monte-Carlo simulations. For step
4 of Algorithm 1, we use the kmeans function in MATLAB and
normalized the vectors {p̂j} as unit norm as suggested in [25].

The first example considers a noiseless setting where the algo-
rithm has access to Ĉy = Cx. We compare the average error rate
(compared to the ground truth communities of the SBM) when ap-
plying Algorithm 1 for different filter orders L and ranks R of the
sketching matrix B. The SBM graph has N = 150 nodes, K = 3
communities and the parameters are set as a = 8 logN/N and
b = logN/N ; see Fig. 2. We observe that the error rate decays
as we increase the filter order L. This is consistent with our result
in Theorem 1. Indeed, for larger values of L, we have that η in (12)
decreases, thus leading to better performance. Furthermore, the per-
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Fig. 4. (Community Detection on Real Network). The Zachary
Karate Club network with N = 34 nodes. (Left) Highlighted nodes
are the locations of the non-zero rows of B. (Right) Snapshot of
the detected communities by proposed method with rank R = 8
observations and filter order L = 8.

formance improves with the observation rank R and approaches that
of applying spectral clustering on the original S. This is reasonable
since a higher observation rank R gives more degree of freedom for
the proposed method to detect the K communities. With a filter or-
der of L = 21 and rank R ≈ 15, the proposed method achieves a
performance comparable to that of having perfect knowledge of S.

The second example considers the finite sample setting and com-
pares the error rate against the number of samples observed T . We
focus on the same simulation settings as in the previous example
and we fix R = 15, yet only a sample covariance Ĉy is observed
and the observation noise has a standard deviation of σ = 10−1

[cf. (5) and (9)]. From Fig. 3, we observe that the error rate gener-
ally decreases as the number of samples increases. This is as pre-
dicted by Theorem 1, and the performance is ultimately limited by
the filter order L and observation noise variance σ2. Interestingly,
we observe that to achieve the same error rate, more samples are also
required when the filter order L is high. This is because for higher
filter orders, the magnitude of the eigenvalue βK(Cx) decreases,
which forces δ in Theorem 1 to decrease [cf. Condition 5].

The last example deals with detecting communities in a real net-
work, namely Zachary’s Karate Club [28]. The graph consists of
N = 34 nodes and is depicted in Fig. 4 (Left). For the proposed
method, we set K = 2 and the graph filter is the same as in the
previous examples with L = 8. The low-rank excitation matrix
B has rank R = 8 with a row-sparsity pattern given by the active
nodes in Fig. 4 (Left). We consider the noisy observation setting
with T = 103 and σ = 10−1. For this case, we have an average er-
ror rate≈ 8.8% when compared to the communities recovered using
spectral clustering on the original S. An example of the recovered
communities is depicted in Fig. 4 (Right).

Conclusions. We studied a method for recovering community struc-
tures from the outputs of a low-pass graph filter subject to low-rank
excitation. The proposed method relies on applying spectral cluster-
ing on the output (sample) covariance matrix. We characterized the
error of such procedure compared to the case where the true graph
shift operator is available. Our analysis shows that the performance
hinges on the spectral gap property of the graph filter involved. Nu-
merical experiments were performed on synthetic and real networks
samples to verify our results.
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