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ABSTRACT

This paper develops new designs for recommender systems in-
spired by recent advances in graph signal processing. Recom-
mender systems aim to predict unknown ratings by exploiting the
information revealed in a subset of user-item observed ratings.
Leveraging the notions of graph frequency and graph filters, we
demonstrate that linear latent factor models, such as low-rank
matrix completion, can be viewed as bandlimited interpolation
algorithms that operate in a frequency domain given by the spec-
trum of a joint user and item network. This new interpretation
paves the way to new methods for enhanced rating prediction.
We propose a low complexity method by exploiting the eigen-
vector of correlation matrices constructed from known ratings.
In the MovieLens 100k dataset, our designs reduce the root mean
squared error compared to the ones in benchmark matrix comple-
tion by 0.6% and benchmark nearest neighbor methods by 4.2%.

Index Terms— Collaborative filtering, recommender sys-
tems, graph signal processing, graph filters, matrix completion

1. INTRODUCTION

The widespread deployment of the Internet technologies has gen-
erated a massive enrollment of online customers in web services,
propelling the need for recommender systems (RS) to assist cus-
tomers in making decisions. In a succinct way, RS are algorithms
that collect information about how users of a particular service
rate items. The collected information is then exploited, along
with additional sources of exogenous information, to provide cus-
tomers with recommendations for the unrated items [2, 3].

Research on RS includes the so-called content filtering ap-
proach, which starts by defining a set of features that characterize
users and items and then uses those to perform predictions [2, 3].
It also includes the collaborative filtering (CoFi) approach, which
relies mostly on past user behavior and carries out predictions
without defining features. Although CoFi comes with certain
disadvantages, it typically requires less assumptions and yields
a superior performance in real datasets [3]. As a result, it has
emerged as the central approach for RS. A common technique
to design CoFi algorithm is latent linear factor models (LLFM),
which tries to model the rating user-item function by identifying a
number of latent factors. Although nonlinear latent factor models
exist, the linear models based on matrix factorization [4] combine
tractability with good practical performance [3]. In particular, by
arranging the available ratings in a matrix form with one of the
dimensions corresponding to users and the other one to items,

†Department of Electrical and Systems Engineering, University of Pennsyl-
vania. ‡Department of Signal Theory and Communications, King Juan Carlos
University. Supported by Spanish MINECO TEC2013-41604-R and TEC2016-
75361-R, and USA ARO W911NF1710438. Previous contribution is in [1].

LLFM typically carries out low-rank singular value decompo-
sition (SVD) that jointly maps users and items to latent factor
linear space of reduced dimensionality [3]. The rating user-item
function is then modeled simply as inner products in the reduced
subspace defined by the SVD.

The goal in this paper is to reinterpret CoFi algorithms using
tools from graph signal processing (SP). In simple words, graph
SP addresses the problem of analyzing and extracting information
from data defined on irregular domains that can be represented
by a graph. The tacit assumption is that the network structure
defines a notion of proximity or dependence among the nodes of
the graph [5, 6]. The theory and application of graph SP is grow-
ing rapidly [7–19]. This paper designs new and more general
recommendation schemes, but equally relevant unveils important
connections between CoFi and graph SP. Graph SP has been used
as an extra term to improve performance of CoFi [17, 18] with-
out changing the scheme, while our work tries to reinterpret and
provides new algorithms for CoFi. More precisely, we show that
matrix factorization methods can be reinterpreted as interpolation
algorithms that, given a subset of signal observations (ratings),
recover the full signal under the assumption that the ratings are
bandlimited in a particular spectral domain. This interpretation
opens the door to the design of more advanced algorithms lead-
ing to a better accuracy. In a nutshell, the contributions of this
paper are: (a) To demonstrate how the standard CoFi approach
based on LLFM can be interpreted as particular types of graph
SP algorithms that model the rating signal as bandlimited. (b) To
exploit this interpretation to design more general algorithms for
LLFM. (c) To show that the proposed methods indeed produce
notable improvement regarding rating prediction accuracy in the
publicly available MovieLens 100k dataset [20]1.

2. FUNDAMENTALS OF COFI AND GRAPH SP

Consider an RS setup with U users indexed by u, and I items
indexed by i. The rating that user u has given to item i is rep-
resented as Xu,i. For mathematical convenience, such ratings
can be collected either into the rating matrix X ∈ RU×I , or into
the rating vector x = vec(X) ∈ RUI . Additionally, vectors
xu = [Xu,1, ..., Xu,I ]> ∈ RI and xi = [X1,i, ..., XU,i]

> ∈ RU

represent the ratings by the u-th user and i-th item, respectively.
To account for the fact that not all ratings are available, let S de-
note the set of indexes that identify user-item pairs whose rating

1 Notation: Generically, the entries of a matrix X and a vector x will be
denoted as Xij and xi; however, when contributing to avoid confusion, the alter-
native notation [X]ij and [x]i will be used. In general, x̃ denotes the frequency
coefficients of x, while x̂ is the estimate of x. The notation > stands for trans-
pose; † stands for pseudo-inverse; λmax(X) is the largest eigenvalue of the ma-
trix X; ‖X‖∗ is the nuclear norm of X; ‖x‖p is the p-norm of x; � and ⊗ are,
respectively the Khatri-Rao and Kronecker product of two matrices; and |X | is
the cardinality of the set X .
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is known. Similarly, Su denotes a set containing the indexes of
the items that user u has rated. We can then use x̄S ∈ R|S| to
denote a vector containing the known ratings. The problem of in-
terest is as follows: Given the ratings x̄S for the item-user pairs
in S , estimate the full rating vector x (matrix X).

2.1. CoFi via LLFM

Latent factor models try to approximate the rating user-item ma-
trix by identifying a few latent features (factors) and then charac-
terize both users and items in terms of those factors. In the linear
case, this amounts to project the original user ratings xu and item
ratings xi into a feature vector space of dimension F . The rat-
ings are then obtained as inner products in such a space. Since in
CoFi the features are not known a priori but learned from the data,
the SVD decomposition plays a key role in identifying the latent
factors as well as the underlying mapping. To be more specific,
let us rely on the SVD factorization to write the rating matrix
as X = Wdiag(σ)Z>. Next, use the singular vectors to define
x̃u = Z>xu as the feature profile of user u and x̃i = W>xi as
the feature profile of item i. With these notational conventions,
any rating Xu,i can be obtained as Xu,i =

∑F
f=1 σf [x̃u]f [x̃i]>f ,

with the f -th singular value σf representing the weight of factor
f in explaining the rating. While the value of F is related to the
the rank of the rating matrix, in real scenarios one expects F to
be small, so that X can be approximated as a low-rank matrix.

Low-rank can be achieved by computing the SVD and keep-
ing only the largest singular values. A major hurdle in this ap-
proach is that computation of the SVD requires full knowledge
of X, but only the rating values in S are known. This implies that
one must solve instead the problem of minimizing rank(X) sub-
ject to Xij = X̄ij ,∀ (u, i) ∈ S. Since the rank function renders
the problem non-convex, a widely used approach is to relax the
rank using the nuclear-norm [4] and set X̂ as the solution to

min
X

‖X‖∗

s. t. |Xu,i − X̄u,i|2 ≤ ε, ∀ (u, i) ∈ S,
(1)

where a tolerance ε to account for potential observation noise in
the known ratings has been included.

2.2. Graph SP

Consider a directed graph G with a set of N nodes or vertices N
and a set of links E , such that if node n is connected to m, then
(n,m) ∈ E . For any graph we define the adjacency matrix A as
a sparse N ×N matrix with non-zero elements Am,n if and only
if (n,m) ∈ E . The value of Am,n captures the strength of the
connection from n to m.

The focus of graph SP is on graph signals defined on the
set of nodes N . Formally, each of these signals can be repre-
sented as a vector z ∈ RN where the n-th element represents the
value of the signal at node n. To facilitate the connections with
NNM, in this work we chose as shift the adjacency matrix A;
however, our results can be easily generalized for other choices
such as Laplacians [5]. We assume S is diagonalizable, so that
S = VΛV−1 with Λ = diag(λ) ∈ CN×N being diagonal and
V = [v1,v2, . . . ,vN ]. When S is symmetric we have that V is
real and unitary, which implies V−1 = V>.

Graph filters are a particular class of linear graph-signal op-
erators able to be represented as matrix polynomials of S [6]

H :=

L−1∑
l=0

hlS
l. (2)

For a given input z, the output of the filter is simply y = Hz.
The filter coefficients are collected into h := [h0, . . . , hL−1]>,
with L−1 denoting the filter degree. The eigendecomposition of
S is used to define the frequency representation of graph signals
and filters. For a signal z ∈ RN and a graph shift operator S =
VΛV−1 ∈ R. The vectors

z̃ = V−1z and z = Vz̃ (3)

form a Graph Fourier Transform (GFT) pair [5, 6].
The GFT encodes a notion of variability for graph signals

akin to one that the Fourier transform encodes for temporal sig-
nals [6, 21]. The smaller the distance between λp and |λmax| in
the complex spectrum, the lower the frequency it represents.

3. COFI FROM A GRAPH SP PERSPECTIVE

In this section, we show that if the ratings x are viewed as a
graph signal defined on particular user-to-user and item-to-item
networks, then LLFM predict signals x̂ that are bandlimited in
the frequency domain defined by those particular networks. That
is, signals that can be expressed as a combination of few eigen-
vectors of the graph shift operator. Let us consider either the
rating matrix X or its centered version X − µUµI/µ, where
µU = 1

I X1, µU = 1
U X>1 and µ = 1

UI

∑
uiXui. The un-

derlying idea behind LLFM is to model the ratings as a matrix
X = Wdiag(σ)Z> with rank F = ‖σ‖0 small. The goal in here
is to interpret LLFM from a graph SP perspective, showing that
predictions based on LLFM give rise to bandlimited signals.

To that end, let us assume that X has been centered and con-
sider the graph shift operators given by the user-to-user and item-
to-item covariance matrices

D =
1

I
XX> and E =

1

U
X>X. (4)

Since the shifts S = D and S = E are symmetric, they admit a
normal eigen-decomposition as

D = VΛDV> and E = UΛEU>. (5)

For the shift S = D, the frequency representation of the ratings
for a given item xi is therefore given by x̃i = V>xi and the
matrix collecting the frequency representations for all item sig-
nals is V>X. Similarly, for S = E the frequency representation
of xu is given by x̃u = U>xu, with matrix U>X> collecting
the frequency signal for all users. Notice that the two GFTs can
be applied jointly, giving rise to the joint (two-dimensional) fre-
quency representation of the user-item rating matrix as

X̃ = V>XU. (6)

The previous matrix can be vectorized to yield

x̃ = vec
(
V>XU

)
= U> ⊗V>x. (7)
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The equation shows that the if the ratings are expressed in the
vector form x, the unitary matrix U> ⊗V> represents the asso-
ciated GFT. This also implies that one can view x ∈ RUI as a
signal defined on a shift S ∈ RUI×UI that has U ⊗V as eigen-
vectors. Two natural choices for such a shift are S = E ⊗ D,
which is the Kronecker graph product graph of the two shifts in
(4), and S = E⊗ I + I⊗D, the Cartesian graph product of the
shifts in (4). We refer [22] for further details on product graphs.

Since LLFM try to approximate the ratings matrix using the
SVD factorization X = Wdiag(σ)Z> with F = ‖σ‖0 small,
from the expressions in (4)-(6) it follows readily that:

(a) The eigenvectors of D and E are the singular vectors of X.

(b) The corresponding GFTs are V> = W> and U> = Z>.

(c) The matrix collecting the frequency coefficients in (6) is
X̃ = diag(σ).

Therefore, since X̃ is diagonal with rank F , vector x̃ ∈ RUI in
(7) will have at most F non-zero entries, withF � UI . In words,
LLFM is essentially modeling the ratings x as a signal that is
bandlimited in a frequency domain associated with the product
graph of the covariance shifts given in (4).

From a practical point of view, it is important to know that
since only the subset of ratings in S is known, unless a priori
information exists, the covariance matrices in (4) cannot be com-
puted beforehand. This implies that the LLFM formulation in (1)
is searching jointly for a sparse x̃ as well as for the eigenvectors
of the user-to-user and item-to-item covariance matrices.

4. ENHANCING COFI VIA GRAPH SP

Using definitions and tools from graph SP, the previous section
demonstrated that the rating predictions generated by LLFM can
be understood as signals that are sparse in a graph frequency do-
main. In this section, we illustrate how these interpretations can
be leveraged to design novel graph-SP-based CoFi methods with
enhanced prediction performance.

Section 3 revealed that, when interpreted from a graph SP
perspective, LLFM builds on two fundamental assumptions: i)
the rating signal x is bandlimited, and ii) x is defined on top of a
graph which can be obtained by combining the user-to-user and
item-to-item covariance matrices. As a result, one can reinter-
pret the prediction carried out by an LLFM as a sampling and
reconstruction problem (cf. Problem 1): given x̄S , our goal is
to recover the full signal x; and the key assumption is that x is
bandlimited and can be written as a linear combination of a few
columns of U ⊗ V. To be rigorous, recall that x stands for the
centered ratings, and (7) stated that x̃ = U>⊗V>x and we have
that x̃ = vec(X̃) = vec(diag(σ)). Since only F of the singular
values in σ are non-zero, the support of x̃ will have cardinality
F and correspond to the F first diagonal elements of X̃. This
readily implies that only F frequencies will be active, those cor-
responding the Kronecker product of the f -th column of U with
the f -th column of V. Using� to denote the Khatri-Rao product
and UF to represent the F first columns of U, we then have

x = (UF �VF )x̃F , with x̃F ∈ RF . (8)

If the eigenvectors are known, the procedure is clear [7, 23]:
Given |S| ≥ F samples of x, invert (8) to estimate x̃F , and
then use the estimate ˆ̃xF to recover the full rating signal as
x̂ = (UF � VF )ˆ̃xF . Moreover, if (UF � VF )S denotes a
submatrix of UF � VF formed by the rows corresponding to
the observed ratings, the least squares estimate of the frequency
components is ˆ̃xF = (UF �VF )†S x̄S and the overall prediction
becomes

x̂ = UF �VF (UF �VF )†S x̄S . (9)
This interpretation is useful not only to come up with new re-
construction schemes, but also to apply results from sampling of
graph signals to RS. For example, different papers have shown
that when the number of observations is small, the set of sam-
pled nodes plays a critical role on recovery performance [7, 23].
Consequently, schemes to select the nodes to be sampled have
been developed [7]. This will amount to identifying user-item
pairs that, if known, would contribute to increase the prediction
performance. In this context, one can envision active sampling
schemes where some users are exposed to particular items so that
the overall prediction of the RS improves.

The rest of the section is devoted to leverage the interpretation
to present different alternatives for LLFM. The main problem to
implement is that the full covariances D and E in (4), which
give rise to V and U, are not known. If the available ratings are
uniformly distributed across users and items, a simple strategy is
to replace the covariances in (4) with the approximations ΣU and
ΣI using only the observed ratings defined as

ΣUuv :=
1

|Suv|
∑

i∈Suv

(X̄ui − µ)(X̄vi − µ),

ΣIij :=
1

|Suv|
∑

u∈Sij

(X̄uj − µ)(X̄ui − µ).

(10)

Let V̂ and Û represent the approximated eigenvectors, the recov-
ery problem to solve in this case is

find x̃F

s. t.
∣∣∣x̄n − [ÛF � V̂F x̃F

]
n

∣∣∣2 ≤ ε, ∀ n ∈ S,
(11)

where the main difference is that the solution in the sampled set
is not forced to coincide with the original observations.

Another alternative is to enlarge the set of active frequencies
both inside and outside the diagonal of X̃. Suppose that the fre-
quency support F is small and known, the formulation is then

find x̃

s. t.
∣∣∣x̄n − [Û⊗ V̂x̃

]
n

∣∣∣2 ≤ ε, ∀ n ∈ S,

x̃f = 0, f /∈ F ,

(12)

and the predicted ratings are simply x̂ = (Û ⊗ V̂)x̃∗, with x̃∗

being the solution to (12). If F is not known, a regularizer ‖x̃‖0
penalizing the number of nonzero coefficients can be added to
the optimization. Since the `0 norm is non-convex, the convex
surrogate ‖x̃‖1 is used instead to yield

minx̃ ‖x̃‖1

s. t.
∣∣∣x̄n − [Û⊗ V̂x̃

]
n

∣∣∣2 ≤ ε, ∀ n ∈ S.
(13)
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Table 1. Summarizing table of performance and the improve-
ment of the proposed methods compared to benchmarks.

Methods RMSE Improvement of the proposed
from benchmarks

Proposed 0.8674
User-based NNM 0.9116 4.85%
Item-based NNM 0.9053 4.19%

Conventional matrix completion 0.8723 0.56%
Matrix completion w/ smoothing 0.8688 0.16%

The above optimization is a classical sparse recovery problem
whose performance depends on the number of observed ratings
|S|, the tolerance ε, as well as on the properties (including coher-
ence) of the so-called sensing matrix Û⊗ V̂ [24].

The last algorithm in this section is inspired by the possibility
to use different graphs for each user and item. This can be incor-
porated to the current sampling setup. Suppose that the focus is
on predicting xn = Xui. Then, denote Bi and Cu as the user-to-
user similarity and item-to-item similarity network for item i and
user u respectively, and let Vi and Uu be the eigenvectors of Bi

and Cu, respectively. The problem (12) then becomes

find x̃

s. t. |x̄n′ − [Uu ⊗Vix̃]n′ |2 ≤ ε, ∀ n′ ∈ S,
x̃f = 0, f /∈ F ,

(14)

The main difficulty with this approach is that (14) needs to be
solved for every n not in S. On the positive side, matrices Bi and
Cu tend to be very sparse and only a few of their eigenvectors
are required (the ones associated with the largest eigenvalues), so
those eigenvectors can be found efficiently.

Summarizing, by reinterpreting LLFM as the recovery of a
bandlimited graph signal from a subset of samples, a number of
novel prediction algorithms have been proposed. All the consid-
ered algorithms proceed in two steps. First, the user-to-user and
item-to-item networks are built and their eigenvectors are found.
Second, using those eigenvectors as input, the prediction is for-
mulated as a sparse recovery problem. The different algorithms
correspond to different ways to build the similarity shifts as well
as different formulations of the sparse recovery. Clearly, alter-
native definitions for the shifts and modifications in the sparse
optimization are also worth considering, but left as future work.

5. NUMERICAL EXPERIMENTS

In this section, we illustrate how the proposed methods im-
prove the rating accuracy in real data. For that purpose we use
the MovieLens 100k dataset [20], which contains ratings from
943 users on 1,682 movies. The number of available ratings is
100,000, i.e., the 6.3% of the total number of user-item pairs.
We randomly select 100 ratings as the testing set Xts, and use the
rest as training set Xtr. The networks and filter coefficients are
only trained on the training set. As a performance metric we use
the global root mean squared error (RMSE). User-based nearest-
neighbor methods (NNM), item-based NNM, and conventional
matrix completion are used as benchmark algorithms. Due to
space limitations only two experiment results are presented. An

exhaustive evaluation will be provided in the journal version of
this paper.

We consider (13) because the support of frequency F is
unknown. The RMSE achieved on the testing set is 0.8674,
which is better than user-based NNM (RMSE 0.9116) by 4.85%,
item-based NNM (RMSE 0.9053) by 4.19%, conventional ma-
trix completion (RMSE 0.8723) by 0.56%, and slightly better
than matrix completion with Laplacian quadratic term [17, 18]
(RMSE 0.8688) by 0.16%; summarizing table illustrated in Ta-
ble 1. This shows that the approximated eigenvectors V̂ and Û
can be used to represent the actual eigenvectors well, and there-
fore the single-step matrix completion can be done separately
by first evaluating the sample eigenvectors V̂ and Û, then esti-
mating the bandlimited frequency components x̃. We emphasize
this divide-and-conquer will greatly lower complexity, as sam-
ple eigenvectors V̂ and Û are fast to evaluate, and (13) can be
written equivalently as

minx̃

∑
n∈S

∣∣∣x̄n − [Û⊗ V̂x̃
]
n

∣∣∣2 + λ‖x̃‖1, (15)

which can be efficiently solved by well-developed solvers, e.g.
[25]. The next experiment relaxes the requirement X̃ = diag(σ)
by letting some off-diagonal elements to be non-zero. More
specifically, if τ represents a small integer number, entries X̃r,t

such that |r − t| ≤ τ are allowed to be non-zero. This yields the
following problem

minX̃

∥∥vec(X̃)
∥∥
1

s. t.
∣∣X̄ui −

[
ÛX̃V̂

]
u,i

∣∣2 ≤ ε, ∀ (u, i) ∈ S,

X̃r,t = 0, if |r − t| > τ.

(16)

Setting τ = 0 would reduce the problem (16) back to (13). We
evaluated the performance of (16) for τ = 1 and τ = 2, and found
that the off diagonal elements X̃r,t with r 6= t generated by the
solver were zero. In other words, the solution and performance
was the same than that of (13). This implies that the model in (13)
captures the key features of our data, with the estimated (sample)
eigenvectors being close to the actual eigenvectors.

6. CONCLUSIONS

This paper exploited results from graph SP to propose new in-
terpretations for RS methods. Our first contribution was to show
that CoFi can be viewed as bandlimited interpolation algorithms
that operate in a frequency domain of a joint user and item net-
work. Leveraging this, we then proposed a new method for RS by
first estimating eigenvectors, and then solving a sparse recovery
problem. We also proposed a computationally efficient scheme to
design the parameters that define our methods and assessed per-
formance in the MovieLens-100k dataset. The results obtained
showed that we reduced the RMSE by a rate of 4.19% compared
to NNM and 0.56% compared to matrix completion. Future work
would be to consider other types of graph filters and to investigate
joint filter from both the user and item graph domain.
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