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ABSTRACT

There is growing interest in the use of coded aperture imag-
ing systems for a variety of applications. Using an analysis
framework based on mutual information, we examine the
fundamental limits of such systems—and the associated op-
timum aperture coding—under simple but meaningful prop-
agation and sensor models. Among other results, we show
that when SNR is high and thermal noise dominates shot
noise, spectrally-flat masks, which have 50% transmissiv-
ity, are optimal, but that when shot noise dominates thermal
noise, randomly generated masks with lower transmissivity
offer greater performance. We also provide comparisons to
classical pinhole and lens-based cameras.

Index Terms— coded aperture cameras, computational
photography, optical signal processing

1. INTRODUCTION
Digital signal processing plays an important role in modern
imaging systems. Many modern imaging systems operating at
optical and higher frequencies use coded apertures, whereby
the traditional lens in the aperture is replaced with a spa-
tial mask that selectively blocks portions of the light from
reaching the sensor. Yet while this is an increasingly impor-
tant imaging modality—and one with a long history dating
back to the earliest pinhole cameras—typical mask designs
are guided by heuristics and/or numerical procedures.

As Figure 1 depicts, with an empty aperture, scene recov-
ery from measurements at the imaging plane is very poorly
conditioned. Coded-aperture cameras seek to improve the
conditioning of the problem through the use of more compli-
cated (and transmissive) masks than a pinhole, in combination
with suitably designed post-processing.

In this paper, we develop a comparative analysis of these
imaging systems, using mutual information as our perfor-
mance measure. We use far-field geometric optics to model
propagation, and our sensor model at the imaging plane in-
cludes thermal and shot noise components.

Among the earliest and simplest instances of coded-
aperture imaging are those based on pinhole structure [1, 2]
and pinspeck (anti-pinhole) structure [3], though more com-
plex structure is often used. Other methods involve cameras
that uses a mask in addition to a lens to, e.g., facilitate depth
estimation [4], deblur out-of-focus elements in an image [5],
enable motion deblurring [6], and/or recover 4D lightfields

Fig. 1: Three imaging systems (left, top-to-bottom): no aper-
ture, a pinhole and a lens. Arrows indicate paths light from
the scene takes to a particular point on the imaging plane. On
the right is an arbitrary mask, an illustration of its discretiza-
tion and the corresponding transfer matrix.

[7]. Some forgo the lens altogether to decrease costs and/or
meet physical constraints [8] [9].

Certain other systems, intended for non-line-of-sight ap-
plications, rely on known structure in between the scene and
the imaging plane to improve the conditioning of the problem
[10, 11, 12]. These can be viewed as instances of the broader
class of coded-aperture systems that we analyze, in which the
mask is naturally occuring and not chosen.

2. MODEL

Scene. Let I(x) [W/m] represent the intensity of the scene
over space in one dimension: 0 ≤ x ≤ L. We denote J =∫
I(x)dx [W] the net power radiated. Assume a uniform dis-

cretization of [0, L] into n bins of size ∆ = L/n each, and
denote x1, x2, . . . , xn their centers. We assume that the dis-
cretization is fine enough that the intensity at each bin i ∈
[1, n] takes constant value I(xi). Let fi = I(xi) · ∆ be the
power radiated from each bin. We model f = [f1, . . . , fn] as
a multivariate Gaussian distribution N (µ1,Q) with mean µ
and covariance matrix Q. We set µ = J/n to ensure that the
average net power is the expectation of the sum of the power
radiated from each bin E[

∑
i∈[1,n] fi] =

∑
i∈[1,n] µ = J .

The Gaussian statistics model for images is frequently used,
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such as in [13, 4]. In this paper, we consider the following
two cases:
IID: We assume that the fi’s are uncorrelated, i.e., Q = θ

nI.
While natural scenes will exhibit correlations, studying the
IID case is a means of performing a worst-case analysis. The
scaling by 1/n ensures that the variance of the total scene
intensity

∑
i fi is independent of n; θ > 0 is a parameter

that captures the variance in total intensity between different
scenes. To ensure non-negativity of the fi’s, let J >>

√
θ.

Decaying-frequency prior: We follow a simple statistical
model according to which the power spectrum of natural im-
age decays exponentially with the spatial frequency [14] by
taking Q = F∗nD

?Fn, where Fn is the normalized DFT
matrix of size n and D? is a diagonal matrix with the fol-
lowing entries: d1 = 1, d?i = d?n−i+1 = θ

nβ
i−1

d(n−1)/2e , i =
2, . . . , d(n+ 1)/2e, for some frequency decay rate parameter
0 < β < 1. A lower β implies a more strongly correlated
scene.
Aperture. Denote by Ã an n×n transfer matrix whose entries
Ãji model the aperture. Because the aperture cannot create
light, only redirect or absorb it, we have that the column-sums
of Ã are at most 1, i.e.

∑
j Ãji ≤ 1. We assume that a

maximal integration time is allowed, and for convenience we
normalize it, A = nÃ, so that the normalized transfer ma-
trices A for absorbing (non-redirecting) apertures are {0, 1}
matrices. Denote by ρ the transmissivity of the aperture. For
an on-off aperture, ρ measures the fraction of elements that
transmit light (See Fig. 1). In general, we assume a circulant
A; that is equivalent to assuming that the mask repeats a cer-
tain pattern (of length n) twice: Aji = a(i−j) mod n where
aT = (a0, . . . , an−1)T is the first row of A.
Imaging plane. The imaging plane consists of n adjacent
and equally-sized pixels. The power yj measured at each
pixel is yj = 1

n

∑n
i=1Aji · fi, where fi is the power radi-

ated from the ith bin. The (1/m)–scaling is chosen to ensure
preservation of energy: E[

∑
j yj ] = 1

n

∑
j

∑
iAji · E[xi] ≤

1
n · n

2 · Jn = J. The measurement model is a reduction of a
more complete forward model, which accounts for distance
attenuation and cosine factors in light propagation [15]. This
reduction corresponds to a scenario where the scene is far
enough from the imaging plane that the distance attenuation
and cosine factors are well-approximated by constants.
Noise. We distinguish between two different types of noise.
(Thermal noise): This includes noise sources that are inde-
pendent of the contribution to the measurements due to the
scene of interest. We model it as additive Gaussian with vari-
ance W/n, where W denotes the constant net noise power
and each pixel absorbs power proportional to its size, giving
rise to the 1/n factor.
(Shot noise): This includes measurement noise that depends
on the contribution due to the scene of interest. This results
in additive Gaussian noise of variance ρ · Jn (proportional to
the net power of light that goes through the aperture).
Overall, the measurement at each pixel is modeled as yj =

∑
i∈[1,n] Ãjifi + zj , where zj ∼ N (0, (W + ρ · J)/n).

Mutual information. The mutual information (MI) between
the measurements yj , j ∈ [n] and the unknowns fi, i ∈ [1, n]

of the imaging problem is given as I = log det
(

1
σ2 ÃQÃT +

I
)
, where the noise variance σ2 = (W +ρ ·J)/n. Recall that

a circulant matrix is diagonalized by Fn. Also, Q = F∗nDFn
where D = θ

nI (IID scene) or D = D? (1/f-prior). With
these, I reduces to (recall A = nÃ)

I =

n∑
i=1

log
( 1

W + ρ · J
· di ·

|λi(A)|2

n
+ 1
)
, (1)

where λi(A) denotes the eigenvalue of A corresponding to
the ith frequency and di denotes the ith entry on the diagonal
of D. We often write λi when clear from context.
Aperture Types. Here, we summarize several types of aper-
ture designs and their corresponding models.
Pinhole: We model a pinhole camera as an on-off mask with
only a single open element, i.e., A = I (or, any permutation
of the identity). This implies ρ = 1/n.
Lens: We model a lens assuming the scene lies entirely at the
focal plane of the lens, in which case it behaves like a pinhole
with much higher intensity: Ã = I (see Fig. 1).
Spectrally-Flat patterns: The family includes pseudo-noise
binary (0/1) patterns such as maximum length sequences
(MLS) and uniform redundant array patterns such as URA
and MURA. Onwards, we refer to patterns with the following
properties as spectrally-flat patterns: (i) ρ ≈ 1/2 (there may
be one more one than zero); (ii) they are spectrally flat with
the exception of a DC term [16, 17, 18, 19].
Random on-off patterns: We study random patterns where
each entry of a is generated IID Bern(p), for p ∈ (0, 1]. For
such random on-off patterns we use ρ = p, since for large n
(which is our focus) the number of on-elements is ≈ np.
Random uniform patterns: We also study patterns consisting
of elements that can partially absorb light, e.g., [20, 7]. We
focus on random such patterns where each entry of a is IID
Uniform([0, 1]). For these patterns, the expected transmissiv-
ity ρ = 1/2.

3. RESULTS
3.1. IID scene

Throughout this section we study the IID scene model. It is
convenient to define γρ = θ

W+ρJ , for 0 < ρ < 1. We use
log(.) and ln(.) to denote the base-2 and base-e logarithms,
respectively. We express all values for the MI in bits.

3.1.1. Pinhole
From (1) the MI of a pinhole is given by Ipinhole = n log

(
θ

n(nW+J)+

1
)
. By allowing only a fraction of 1/n of the light to go

through, the formula justifies that the performance of a pin-
hole deteriorates drastically for large n. Note that this result
applies only to a vanishingly small pinhole (decreasing in
size as n increases); a pinhole of fixed size achieves constant
mutual information.
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3.1.2. Lens
From (1) the normalized MI of a lens is given by 1

nI lens =

log( θ
W+J + 1). Thus lenses outperform any purely absorbing

(mask-based) aperture.

3.1.3. Spectrally-flat patterns

The following proposition characterizes the MI of spectrally-
flat patterns and shows that they maximize MI when thermal
noise is dominant. See Appendix A for a proof sketch.

Proposition 3.1. Consider the IID scene model. Let ISF be
the mutual information of a spectrally-flat pattern for an odd
n.1 It holds that:

lim
n→∞

ISF = log(
γ1/2

4
+ 1) +

γ1/2

4 ln(2)
. (2)

Remark 1. For spectrally-flat occluders, λ1 ≈ n
2 and |λ2| =

. . . = |λn| ≈
√
n
2 . Throughout, statements that involve n →

∞ are to be interpreted with the rest of parameters (such as
W , J , θ, ρ) held constant (independent of n).

3.1.4. Random on-off patterns
We explicitly compute the asymptotic value of the MI for ran-
dom on-off patterns. Our theoretical results use tools from
random matrix theory (RMT) [21, 22] and are thus asymptotic
in nature. (However, numerical simulations suggest accuracy
of the predictions for n on the order of a few hundreds.) A
proof sketch is deferred to Appendix A.

Proposition 3.2. Assume the IID scene model. The mutual
information Ip for a random on-off circulant system with pa-
rameter 0 < p < 1 converges in probability with n → ∞ to:
Ĩp = log (p2γp + 1) + p(1− p)γp/ ln(2).

Remark 2. Maximizing Ip over p gives the optimal choice
p? of the transmissivity parameter. Given the formula of
Prop. 3.2, it is possible to numerically evaluate p? for different
values of the parameters J,W, θ. See Fig. 2 for an illustration.
Furthermore, by analyzing the derived asymptotic formula for
the MI, it is possible to obtain analytic conclusions for some
interesting regimes of parameters. For example, when ther-
mal noise dominates (W >> θ and W >> J), then using
log (p2γ + 1) ≈ p2γ gives p? ≈ 1; i.e., an open aperture is
optimal. When SNR is high and thermal noise is the stronger
of the two noise sources (θ >> W >> J), p? ≈ 0.5; when
shot noise is stronger (θ >> J >> W ), p? is small.2

Remark 3. Comparing Prop. 3.1 to Prop. 3.2 reveals that in
the n→∞ limit, the performance of balanced random on-off
circulant systems with p = 1/2 approach the performance of
spectrally-flat circulant systems.

1Here, we implicitly assume that n is such that an MLS, or URA, or
MURA pattern exists. For example, MURA patterns can be generated for
any prime n that is of the form 4d+ 1, d = 1, 2, . . ..

2Analyzing dĨp
dp

reveals that 0 < p? < max

(√
J
θ
,
√
W
J

)
.

Fig. 2: A plot of optimal transmissivity parameter p? for
random on-off patterns in the IID scene model, as we vary
shot noise power J and signal strength θ while ambient noise
power W is held fixed. See Remark 2.

3.1.5. Random uniform patterns
Similarly to Proposition 3.2, we leverage results of [21] to
evaluate the MI performance of random uniform patterns; we
omit the details due to space limitations.

Proposition 3.3. Consider the IID scene model. The mutual
information Iuniform for a random uniform circulant system
converges in probability with n to: Ĩuniform = log(γ4 + 1) +

γ
12 ln(2) , with γ = θ

W+J/2 .

Comparing the formula of the proposition to Proposition
3.2, reveals that Ĩuniform < Ĩp, for all p ∈ [ 12 ,

1
2 + 1√

6
].

Hence, random on-off masks in this range of p outperform
random uniform masks. In short, if physical limitations pre-
vent the use of apertures that can redirect light, but can only
absorb it, then absorbing all or nothing (with appropriate p) is
better than partial absorption (at least for random designs).

3.2. Correlated scene

We extend the “worst-case” analysis of the previous section
regarding IID scenes to correlated ones. We follow the β−d

scene prior model. Due to space limitations, we restrict the
exposition to spectrally-flat and random on-off patterns. For
convenience, we assume n is odd.

Spectrally-flat patterns: For large enough n, we find that the
MI of spectrally-flat patterns corresponds to: limn→∞ ISF =

log(
γ1/2
4 + 1) +

γ1/2(1−β)
4 ln(2) ln(1/β) . The derivation of this result is

a straightforward extension of (2), and we elide it for space.

Remark 4. In the β → 1 limit, correlations between the xi
approach 0, and it can be shown that the formula above ap-
proaches that in (2), as expected.

Random on-off patterns: Contrary to the case of IID scenes
where knowledge of the the limiting spectral density of A suf-
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fices to characterize the MI, for correlated scenes each eigen-
value is weighted differently. Hence, the behavior of the MI
depends on the statistics of each individual eigenvalue. Since
A is circulant, the eigenvalues ofA are exactly the Fourier co-
efficients of the entries of the generating vector a, i.e., λ1 =∑n−1
`=0 a`, and, for k = 2, . . . , n−12 (assume n is odd for sim-

plicity): λ2k = λ2n−k = g2k + h2k, where gk :=
∑n−1
`=0 a` ·

cos(`k 2π
n ), hk :=

∑n−1
`=0 a` · sin(`k 2π

n ). Next, observe that
if the ai’s were standard Gaussians then the following state-
ments would hold. (a) λ1 is distributed N (0, n). (b) gk’s
and hk’s are IID N (0, 1/2); therefore, λ2k

iid∼ 1
2χ

2
2 where χ2

2

denotes a chi-squared random variable with two degrees of
freedom. This leads to the following conclusion:

Lemma 3.1. Let the first row of a circulant A have en-
tries drawn IID from standard Gaussians and let the MI be
given as in (1) for di = d?i and for some average transmis-
sivity ρ. Then, E[I] equals EG∼N (0,1) log

(
γρG

2 + 1
)

+

2
∑n+1

2

k=2 EX∼χ2
2

log
(
γρ

Xβ
k−1

(n−1)/2

2n + 1
)
.

We conjecture that in the n→∞ limit, the conclusion of
Lemma 3.1 is universal over the distribution of the entries of
aT , i.e., it holds for entries that have zero mean, unit variance,
and bounded third moment. Based on this assumption, we
posit that the expected mutual information E[Ip] for a random
on-off circulant system with parameter 0 < p < 1 for the
correlated scene model is given by:

EG∼N (0,1) log
( 1
n
γp(
√
p(1− p) ·G+ p

√
n)2 + 1

)
+ 2

n+1
2∑

k=2

EX∼χ2
2
log
( 1

2n
γpp(1− p)Xβ

k−1
(n−1)/2 + 1

)
.

(3)
Remark 5. It is apparent from inspection of (3) that a lower β
(i.e. a more correlated scene) implies a higher p?. This effect
can be observed in Figure 3, which also compares (3) against
simulated data.

4. DISCUSSION AND FUTURE WORK

Our framework allows to rigorously analyze random on-off
and spectrally-flat patterns for IID scenes and accurately char-
acterize the optimal transmissivity of masks in a variety of
different noise regimes. [7] raises the question of whether
continuous-valued masks perform better than binary-valued
ones; we plan to use our framework to find an answer in the
future. In this work, we focused exclusively on 1D masks,
which are relevant for example in de-blurring along one di-
mension [6]. We leave extensions to 2D masks to future work.
However, we note that much of the analysis conducted here
can be directly applied to study separable 2D apertures, i.e.
ones that can be expressed as the outer product of two 1D
apertures.
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Fig. 3: Analytical formula follows Eqn. (3). Simulated data
are averages of 200 randomly generated apertures of size
n = 251 for various different values p. We set J/W = 0
dB and θ/W = 30 dB. Simulations match our analysis per-
fectly, providing support for the conjecture of (3).

A. PROOF SKETCHES

Proof sketch of Proposition 3.1: For convenience we use
λi := λi(A). We treat the DC-term of the spectrum, i.e.
λ1, separately from the rest. Note that A1 = (np)1; thus,
λ1 = np. Next, let us denote I∼1 the MI in (1), excluding
the term that involves λ1. By concavity of log, I∼1 is upper
bounded by

(n− 1) log
( γ

(n− 1)n2

n∑
i=2

|λi(A)|2 + 1
)
≈ γp(1− p)

ln(2)
, (4)

where the bound is tight iff |λ2| = |λ3| = . . . = |λn|; (4)
uses the fact that

∑n
i=2 |λi(A)|2 = ‖A‖2F −λ21 = n2p(1−p)

and n ≈ n − 1 and n log(αn + 1) = α/ ln(2) for large n.
In particular, spectrally-flat patterns achieve the upper bound,
which gives ISF ≈ log(γ4 + 1) + γ

4 ln(2) .

Proof sketch of Proposition 3.2: The proof leverages the
following result of [21]. Consider a reverse circulant matrix
1√
n
B with entries Bji = bj+i−2 mod n, and (b0, b1, . . . , bn).

a sequence of IID random variables with mean zero, unit
variance and bounded third moment. Then, the empiri-
cal spectral density (ESD) of B converges to the limiting
spectral distribution with density fX(x) = |x|e−x2

. In
our setting, we are interested in the ESD of AAT for A
that has entries Bern(p). To apply the result of [21], con-
sider: A′ = (A − p11T )/

√
p(1− p). The entries of A′

have zero mean and unit variance. Moreover, λj(A′) =

λj(A)/
√
p(1− p) for j = 2, . . . , n. It can be shown that

|λj(A′)|2 = λ2j (B) [21, Lem. 1]. Applying these to (1) gives

I =
∑n
i=1 log

(
θp(1−p)
n(W+pJ) · λ

2
i

(
1√
n
B
)

+ 1
)
n→∞→ Ĩp, where

the convergence result follows from a Taylor series expansion
of log(1 + x), the result of [21], and

∫∞
−∞ x2|x|e−x2

= 1.
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